62 Commits

Author SHA1 Message Date
Marco Crivellari
0409819a00 bpf: replace use of system_unbound_wq with system_dfl_wq
Currently if a user enqueue a work item using schedule_delayed_work() the
used wq is "system_wq" (per-cpu wq) while queue_delayed_work() use
WORK_CPU_UNBOUND (used when a cpu is not specified). The same applies to
schedule_work() that is using system_wq and queue_work(), that makes use
again of WORK_CPU_UNBOUND.

This lack of consistentcy cannot be addressed without refactoring the API.

system_unbound_wq should be the default workqueue so as not to enforce
locality constraints for random work whenever it's not required.

Adding system_dfl_wq to encourage its use when unbound work should be used.

queue_work() / queue_delayed_work() / mod_delayed_work() will now use the
new unbound wq: whether the user still use the old wq a warn will be
printed along with a wq redirect to the new one.

The old system_unbound_wq will be kept for a few release cycles.

Suggested-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Marco Crivellari <marco.crivellari@suse.com>
Link: https://lore.kernel.org/r/20250905085309.94596-3-marco.crivellari@suse.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2025-09-08 10:04:37 -07:00
Alexei Starovoitov
8714381703 Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
Cross-merge bpf fixes after downstream PR.

In particular to bring the fix in
commit aa30eb3260 ("bpf: Force checkpoint when jmp history is too long").
The follow up verifier work depends on it.
And the fix in
commit 6801cf7890 ("selftests/bpf: Use -4095 as the bad address for bits iterator").
It's fixing instability of BPF CI on s390 arch.

No conflicts.

Adjacent changes in:
Auto-merging arch/Kconfig
Auto-merging kernel/bpf/helpers.c
Auto-merging kernel/bpf/memalloc.c
Auto-merging kernel/bpf/verifier.c
Auto-merging mm/slab_common.c

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-11-13 12:52:51 -08:00
Hou Tao
62a898b07b bpf: Add bpf_mem_alloc_check_size() helper
Introduce bpf_mem_alloc_check_size() to check whether the allocation
size exceeds the limitation for the kmalloc-equivalent allocator. The
upper limit for percpu allocation is LLIST_NODE_SZ bytes larger than
non-percpu allocation, so a percpu argument is added to the helper.

The helper will be used in the following patch to check whether the size
parameter passed to bpf_mem_alloc() is too big.

Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20241030100516.3633640-3-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-10-30 12:13:46 -07:00
Markus Elfring
40f34d6f12 bpf: Call kfree(obj) only once in free_one()
A kfree() call is always used at the end of this function implementation.
Thus specify such a function call only once instead of duplicating it
in a previous if branch.

This issue was detected by using the Coccinelle software.

Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/bpf/08987123-668c-40f3-a8ee-c3038d94f069@web.de
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-10-03 17:47:35 -07:00
Uros Bizjak
6d641ca50d bpf: Fix percpu address space issues
In arraymap.c:

In bpf_array_map_seq_start() and bpf_array_map_seq_next()
cast return values from the __percpu address space to
the generic address space via uintptr_t [1].

Correct the declaration of pptr pointer in __bpf_array_map_seq_show()
to void __percpu * and cast the value from the generic address
space to the __percpu address space via uintptr_t [1].

In hashtab.c:

Assign the return value from bpf_mem_cache_alloc() to void pointer
and cast the value to void __percpu ** (void pointer to percpu void
pointer) before dereferencing.

In memalloc.c:

Explicitly declare __percpu variables.

Cast obj to void __percpu **.

In helpers.c:

Cast ptr in BPF_CALL_1 and BPF_CALL_2 from generic address space
to __percpu address space via const uintptr_t [1].

Found by GCC's named address space checks.

There were no changes in the resulting object files.

[1] https://sparse.docs.kernel.org/en/latest/annotations.html#address-space-name

Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: Eduard Zingerman <eddyz87@gmail.com>
Cc: Song Liu <song@kernel.org>
Cc: Yonghong Song <yonghong.song@linux.dev>
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: KP Singh <kpsingh@kernel.org>
Cc: Stanislav Fomichev <sdf@fomichev.me>
Cc: Hao Luo <haoluo@google.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240811161414.56744-1-ubizjak@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-08-22 08:01:50 -07:00
Johannes Weiner
3a3b7fec39 mm: remove CONFIG_MEMCG_KMEM
CONFIG_MEMCG_KMEM used to be a user-visible option for whether slab
tracking is enabled.  It has been default-enabled and equivalent to
CONFIG_MEMCG for almost a decade.  We've only grown more kernel memory
accounting sites since, and there is no imaginable cgroup usecase going
forward that wants to track user pages but not the multitude of
user-drivable kernel allocations.

Link: https://lkml.kernel.org/r/20240701153148.452230-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-10 12:14:54 -07:00
Yosry Ahmed
91b71e78b8 mm: memcg: add NULL check to obj_cgroup_put()
9 out of 16 callers perform a NULL check before calling obj_cgroup_put(). 
Move the NULL check in the function, similar to mem_cgroup_put().  The
unlikely() NULL check in current_objcg_update() was left alone to avoid
dropping the unlikey() annotation as this a fast path.

Link: https://lkml.kernel.org/r/20240316015803.2777252-1-yosryahmed@google.com
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:55:43 -07:00
Yonghong Song
9ddf872b47 bpf: Remove unnecessary cpu == 0 check in memalloc
After merging the patch set [1] to reduce memory usage
for bpf_global_percpu_ma, Alexei found a redundant check (cpu == 0)
in function bpf_mem_alloc_percpu_unit_init() ([2]).
Indeed, the check is unnecessary since c->unit_size will
be all NULL or all non-NULL for all cpus before
for_each_possible_cpu() loop.
Removing the check makes code less confusing.

  [1] https://lore.kernel.org/all/20231222031729.1287957-1-yonghong.song@linux.dev/
  [2] https://lore.kernel.org/all/20231222031745.1289082-1-yonghong.song@linux.dev/

Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20240104165744.702239-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-04 10:18:14 -08:00
Yonghong Song
0e2ba9f96f bpf: Use smaller low/high marks for percpu allocation
Currently, refill low/high marks are set with the assumption
of normal non-percpu memory allocation. For example, for
an allocation size 256, for non-percpu memory allocation,
low mark is 32 and high mark is 96, resulting in the
batch allocation of 48 elements and the allocated memory
will be 48 * 256 = 12KB for this particular cpu.
Assuming an 128-cpu system, the total memory consumption
across all cpus will be 12K * 128 = 1.5MB memory.

This might be okay for non-percpu allocation, but may not be
good for percpu allocation, which will consume 1.5MB * 128 = 192MB
memory in the worst case if every cpu has a chance of memory
allocation.

In practice, percpu allocation is very rare compared to
non-percpu allocation. So let us have smaller low/high marks
which can avoid unnecessary memory consumption.

Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231222031755.1289671-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-03 21:08:25 -08:00
Yonghong Song
5b95e638f1 bpf: Refill only one percpu element in memalloc
Typically for percpu map element or data structure, once allocated,
most operations are lookup or in-place update. Deletion are really
rare. Currently, for percpu data strcture, 4 elements will be
refilled if the size is <= 256. Let us just do with one element
for percpu data. For example, for size 256 and 128 cpus, the
potential saving will be 3 * 256 * 128 * 128 = 12MB.

Acked-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20231222031750.1289290-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-03 21:08:25 -08:00
Yonghong Song
c39aa3b289 bpf: Allow per unit prefill for non-fix-size percpu memory allocator
Commit 41a5db8d81 ("Add support for non-fix-size percpu mem allocation")
added support for non-fix-size percpu memory allocation.
Such allocation will allocate percpu memory for all buckets on all
cpus and the memory consumption is in the order to quadratic.
For example, let us say, 4 cpus, unit size 16 bytes, so each
cpu has 16 * 4 = 64 bytes, with 4 cpus, total will be 64 * 4 = 256 bytes.
Then let us say, 8 cpus with the same unit size, each cpu
has 16 * 8 = 128 bytes, with 8 cpus, total will be 128 * 8 = 1024 bytes.
So if the number of cpus doubles, the number of memory consumption
will be 4 times. So for a system with large number of cpus, the
memory consumption goes up quickly with quadratic order.
For example, for 4KB percpu allocation, 128 cpus. The total memory
consumption will 4KB * 128 * 128 = 64MB. Things will become
worse if the number of cpus is bigger (e.g., 512, 1024, etc.)

In Commit 41a5db8d81, the non-fix-size percpu memory allocation is
done in boot time, so for system with large number of cpus, the initial
percpu memory consumption is very visible. For example, for 128 cpu
system, the total percpu memory allocation will be at least
(16 + 32 + 64 + 96 + 128 + 196 + 256 + 512 + 1024 + 2048 + 4096)
  * 128 * 128 = ~138MB.
which is pretty big. It will be even bigger for larger number of cpus.

Note that the current prefill also allocates 4 entries if the unit size
is less than 256. So on top of 138MB memory consumption, this will
add more consumption with
3 * (16 + 32 + 64 + 96 + 128 + 196 + 256) * 128 * 128 = ~38MB.
Next patch will try to reduce this memory consumption.

Later on, Commit 1fda5bb66a ("bpf: Do not allocate percpu memory
at init stage") moved the non-fix-size percpu memory allocation
to bpf verificaiton stage. Once a particular bpf_percpu_obj_new()
is called by bpf program, the memory allocator will try to fill in
the cache with all sizes, causing the same amount of percpu memory
consumption as in the boot stage.

To reduce the initial percpu memory consumption for non-fix-size
percpu memory allocation, instead of filling the cache with all
supported allocation sizes, this patch intends to fill the cache
only for the requested size. As typically users will not use large
percpu data structure, this can save memory significantly.
For example, the allocation size is 64 bytes with 128 cpus.
Then total percpu memory amount will be 64 * 128 * 128 = 1MB,
much less than previous 138MB.

Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231222031745.1289082-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-03 21:08:25 -08:00
Yonghong Song
9fc8e80204 bpf: Add objcg to bpf_mem_alloc
The objcg is a bpf_mem_alloc level property since all bpf_mem_cache's
are with the same objcg. This patch made such a property explicit.
The next patch will use this property to save and restore objcg
for percpu unit allocator.

Acked-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20231222031739.1288590-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-03 21:08:25 -08:00
Yonghong Song
9beda16c25 bpf: Avoid unnecessary extra percpu memory allocation
Currently, for percpu memory allocation, say if the user
requests allocation size to be 32 bytes, the actually
calculated size will be 40 bytes and it further rounds
to 64 bytes, and eventually 64 bytes are allocated,
wasting 32-byte memory.

Change bpf_mem_alloc() to calculate the cache index
based on the user-provided allocation size so unnecessary
extra memory can be avoided.

Suggested-by: Hou Tao <houtao1@huawei.com>
Acked-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20231222031734.1288400-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-03 21:08:25 -08:00
Hou Tao
7ac5c53e00 bpf: Use c->unit_size to select target cache during free
At present, bpf memory allocator uses check_obj_size() to ensure that
ksize() of allocated pointer is equal with the unit_size of used
bpf_mem_cache. Its purpose is to prevent bpf_mem_free() from selecting
a bpf_mem_cache which has different unit_size compared with the
bpf_mem_cache used for allocation. But as reported by lkp, the return
value of ksize() or kmalloc_size_roundup() may change due to slab merge
and it will lead to the warning report in check_obj_size().

The reported warning happened as follows:
(1) in bpf_mem_cache_adjust_size(), kmalloc_size_roundup(96) returns the
object_size of kmalloc-96 instead of kmalloc-cg-96. The object_size of
kmalloc-96 is 96, so size_index for 96 is not adjusted accordingly.
(2) the object_size of kmalloc-cg-96 is adjust from 96 to 128 due to
slab merge in __kmem_cache_alias(). For SLAB, SLAB_HWCACHE_ALIGN is
enabled by default for kmalloc slab, so align is 64 and size is 128 for
kmalloc-cg-96. SLUB has a similar merge logic, but its object_size will
not be changed, because its align is 8 under x86-64.
(3) when unit_alloc() does kmalloc_node(96, __GFP_ACCOUNT, node),
ksize() returns 128 instead of 96 for the returned pointer.
(4) the warning in check_obj_size() is triggered.

Considering the slab merge can happen in anytime (e.g, a slab created in
a new module), the following case is also possible: during the
initialization of bpf_global_ma, there is no slab merge and ksize() for
a 96-bytes object returns 96. But after that a new slab created by a
kernel module is merged to kmalloc-cg-96 and the object_size of
kmalloc-cg-96 is adjust from 96 to 128 (which is possible for x86-64 +
CONFIG_SLAB, because its alignment requirement is 64 for 96-bytes slab).
So soon or later, when bpf_global_ma frees a 96-byte-sized pointer
which is allocated from bpf_mem_cache with unit_size=96, bpf_mem_free()
will free the pointer through a bpf_mem_cache in which unit_size is 128,
because the return value of ksize() changes. The warning for the
mismatch will be triggered again.

A feasible fix is introducing similar APIs compared with ksize() and
kmalloc_size_roundup() to return the actually-allocated size instead of
size which may change due to slab merge, but it will introduce
unnecessary dependency on the implementation details of mm subsystem.

As for now the pointer of bpf_mem_cache is saved in the 8-bytes area
(or 4-bytes under 32-bit host) above the returned pointer, using
unit_size in the saved bpf_mem_cache to select the target cache instead
of inferring the size from the pointer itself. Beside no extra
dependency on mm subsystem, the performance for bpf_mem_free_rcu() is
also improved as shown below.

Before applying the patch, the performances of bpf_mem_alloc() and
bpf_mem_free_rcu() on 8-CPUs VM with one producer are as follows:

kmalloc : alloc 11.69 ± 0.28M/s free 29.58 ± 0.93M/s
percpu  : alloc 14.11 ± 0.52M/s free 14.29 ± 0.99M/s

After apply the patch, the performance for bpf_mem_free_rcu() increases
9% and 146% for kmalloc memory and per-cpu memory respectively:

kmalloc: alloc 11.01 ± 0.03M/s free   32.42 ± 0.48M/s
percpu:  alloc 12.84 ± 0.12M/s free   35.24 ± 0.23M/s

After the fixes, there is no need to adjust size_index to fix the
mismatch between allocation and free, so remove it as well. Also return
NULL instead of ZERO_SIZE_PTR for zero-sized alloc in bpf_mem_alloc(),
because there is no bpf_mem_cache pointer saved above ZERO_SIZE_PTR.

Fixes: 9077fc228f ("bpf: Use kmalloc_size_roundup() to adjust size_index")
Reported-by: kernel test robot <oliver.sang@intel.com>
Closes: https://lore.kernel.org/bpf/202310302113.9f8fe705-oliver.sang@intel.com
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231216131052.27621-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-20 13:25:46 -08:00
Hou Tao
75a442581d bpf: Add missed allocation hint for bpf_mem_cache_alloc_flags()
bpf_mem_cache_alloc_flags() may call __alloc() directly when there is no
free object in free list, but it doesn't initialize the allocation hint
for the returned pointer. It may lead to bad memory dereference when
freeing the pointer, so fix it by initializing the allocation hint.

Fixes: 822fb26bdb ("bpf: Add a hint to allocated objects.")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20231111043821.2258513-1-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-11-26 18:00:26 -08:00
Hou Tao
c421c12586 bpf: Add more WARN_ON_ONCE checks for mismatched alloc and free
There are two possible mismatched alloc and free cases in BPF memory
allocator:

1) allocate from cache X but free by cache Y with a different unit_size
2) allocate from per-cpu cache but free by kmalloc cache or vice versa

So add more WARN_ON_ONCE checks in free_bulk() and __free_by_rcu() to
spot these mismatched alloc and free early.

Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20231021014959.3563841-1-houtao@huaweicloud.com
2023-10-26 14:23:33 +02:00
Hou Tao
3f2189e4f7 bpf: Use pcpu_alloc_size() in bpf_mem_free{_rcu}()
For bpf_global_percpu_ma, the pointer passed to bpf_mem_free_rcu() is
allocated by kmalloc() and its size is fixed (16-bytes on x86-64). So
no matter which cache allocates the dynamic per-cpu area, on x86-64
cache[2] will always be used to free the per-cpu area.

Fix the unbalance by checking whether the bpf memory allocator is
per-cpu or not and use pcpu_alloc_size() instead of ksize() to
find the correct cache for per-cpu free.

Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231020133202.4043247-5-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-10-20 14:15:13 -07:00
Hou Tao
baa8fdecd8 bpf: Re-enable unit_size checking for global per-cpu allocator
With pcpu_alloc_size() in place, check whether or not the size of
the dynamic per-cpu area is matched with unit_size.

Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231020133202.4043247-4-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-10-20 14:15:13 -07:00
Jakub Kicinski
2606cf059c Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Cross-merge networking fixes after downstream PR.

No conflicts (or adjacent changes of note).

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-10-05 13:16:47 -07:00
Hou Tao
9077fc228f bpf: Use kmalloc_size_roundup() to adjust size_index
Commit d52b59315b ("bpf: Adjust size_index according to the value of
KMALLOC_MIN_SIZE") uses KMALLOC_MIN_SIZE to adjust size_index, but as
reported by Nathan, the adjustment is not enough, because
__kmalloc_minalign() also decides the minimal alignment of slab object
as shown in new_kmalloc_cache() and its value may be greater than
KMALLOC_MIN_SIZE (e.g., 64 bytes vs 8 bytes under a riscv QEMU VM).

Instead of invoking __kmalloc_minalign() in bpf subsystem to find the
maximal alignment, just using kmalloc_size_roundup() directly to get the
corresponding slab object size for each allocation size. If these two
sizes are unmatched, adjust size_index to select a bpf_mem_cache with
unit_size equal to the object_size of the underlying slab cache for the
allocation size.

Fixes: 822fb26bdb ("bpf: Add a hint to allocated objects.")
Reported-by: Nathan Chancellor <nathan@kernel.org>
Closes: https://lore.kernel.org/bpf/20230914181407.GA1000274@dev-arch.thelio-3990X/
Signed-off-by: Hou Tao <houtao1@huawei.com>
Tested-by: Emil Renner Berthing <emil.renner.berthing@canonical.com>
Link: https://lore.kernel.org/r/20230928101558.2594068-1-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-09-30 09:39:28 -07:00
Paolo Abeni
e9cbc89067 Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Cross-merge networking fixes after downstream PR.

No conflicts.

Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2023-09-21 21:49:45 +02:00
Hou Tao
dca7acd84e bpf: Skip unit_size checking for global per-cpu allocator
For global per-cpu allocator, the size of free object in free list
doesn't match with unit_size and now there is no way to get the size of
per-cpu pointer saved in free object, so just skip the checking.

Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Closes: https://lore.kernel.org/bpf/20230913133436.0eeec4cb@canb.auug.org.au/
Signed-off-by: Hou Tao <houtao1@huawei.com>
Tested-by: Biju Das <biju.das.jz@bp.renesas.com>
Link: https://lore.kernel.org/r/20230913135943.3137292-1-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-09-15 10:22:24 -07:00
Hou Tao
c930472552 bpf: Ensure unit_size is matched with slab cache object size
Add extra check in bpf_mem_alloc_init() to ensure the unit_size of
bpf_mem_cache is matched with the object_size of underlying slab cache.
If these two sizes are unmatched, print a warning once and return
-EINVAL in bpf_mem_alloc_init(), so the mismatch can be found early and
the potential issue can be prevented.

Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20230908133923.2675053-4-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-09-11 12:41:37 -07:00
Hou Tao
b1d53958b6 bpf: Don't prefill for unused bpf_mem_cache
When the unit_size of a bpf_mem_cache is unmatched with the object_size
of the underlying slab cache, the bpf_mem_cache will not be used, and
the allocation will be redirected to a bpf_mem_cache with a bigger
unit_size instead, so there is no need to prefill for these
unused bpf_mem_caches.

Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20230908133923.2675053-3-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-09-11 12:41:37 -07:00
Hou Tao
d52b59315b bpf: Adjust size_index according to the value of KMALLOC_MIN_SIZE
The following warning was reported when running "./test_progs -a
link_api -a linked_list" on a RISC-V QEMU VM:

  ------------[ cut here ]------------
  WARNING: CPU: 3 PID: 261 at kernel/bpf/memalloc.c:342 bpf_mem_refill
  Modules linked in: bpf_testmod(OE)
  CPU: 3 PID: 261 Comm: test_progs- ... 6.5.0-rc5-01743-gdcb152bb8328 #2
  Hardware name: riscv-virtio,qemu (DT)
  epc : bpf_mem_refill+0x1fc/0x206
   ra : irq_work_single+0x68/0x70
  epc : ffffffff801b1bc4 ra : ffffffff8015fe84 sp : ff2000000001be20
   gp : ffffffff82d26138 tp : ff6000008477a800 t0 : 0000000000046600
   t1 : ffffffff812b6ddc t2 : 0000000000000000 s0 : ff2000000001be70
   s1 : ff5ffffffffe8998 a0 : ff5ffffffffe8998 a1 : ff600003fef4b000
   a2 : 000000000000003f a3 : ffffffff80008250 a4 : 0000000000000060
   a5 : 0000000000000080 a6 : 0000000000000000 a7 : 0000000000735049
   s2 : ff5ffffffffe8998 s3 : 0000000000000022 s4 : 0000000000001000
   s5 : 0000000000000007 s6 : ff5ffffffffe8570 s7 : ffffffff82d6bd30
   s8 : 000000000000003f s9 : ffffffff82d2c5e8 s10: 000000000000ffff
   s11: ffffffff82d2c5d8 t3 : ffffffff81ea8f28 t4 : 0000000000000000
   t5 : ff6000008fd28278 t6 : 0000000000040000
  [<ffffffff801b1bc4>] bpf_mem_refill+0x1fc/0x206
  [<ffffffff8015fe84>] irq_work_single+0x68/0x70
  [<ffffffff8015feb4>] irq_work_run_list+0x28/0x36
  [<ffffffff8015fefa>] irq_work_run+0x38/0x66
  [<ffffffff8000828a>] handle_IPI+0x3a/0xb4
  [<ffffffff800a5c3a>] handle_percpu_devid_irq+0xa4/0x1f8
  [<ffffffff8009fafa>] generic_handle_domain_irq+0x28/0x36
  [<ffffffff800ae570>] ipi_mux_process+0xac/0xfa
  [<ffffffff8000a8ea>] sbi_ipi_handle+0x2e/0x88
  [<ffffffff8009fafa>] generic_handle_domain_irq+0x28/0x36
  [<ffffffff807ee70e>] riscv_intc_irq+0x36/0x4e
  [<ffffffff812b5d3a>] handle_riscv_irq+0x54/0x86
  [<ffffffff812b6904>] do_irq+0x66/0x98
  ---[ end trace 0000000000000000 ]---

The warning is due to WARN_ON_ONCE(tgt->unit_size != c->unit_size) in
free_bulk(). The direct reason is that a object is allocated and
freed by bpf_mem_caches with different unit_size.

The root cause is that KMALLOC_MIN_SIZE is 64 and there is no 96-bytes
slab cache in the specific VM. When linked_list test allocates a
72-bytes object through bpf_obj_new(), bpf_global_ma will allocate it
from a bpf_mem_cache with 96-bytes unit_size, but this bpf_mem_cache is
backed by 128-bytes slab cache. When the object is freed, bpf_mem_free()
uses ksize() to choose the corresponding bpf_mem_cache. Because the
object is allocated from 128-bytes slab cache, ksize() returns 128,
bpf_mem_free() chooses a 128-bytes bpf_mem_cache to free the object and
triggers the warning.

A similar warning will also be reported when using CONFIG_SLAB instead
of CONFIG_SLUB in a x86-64 kernel. Because CONFIG_SLUB defines
KMALLOC_MIN_SIZE as 8 but CONFIG_SLAB defines KMALLOC_MIN_SIZE as 32.

An alternative fix is to use kmalloc_size_round() in bpf_mem_alloc() to
choose a bpf_mem_cache which has the same unit_size with the backing
slab cache, but it may introduce performance degradation, so fix the
warning by adjusting the indexes in size_index according to the value of
KMALLOC_MIN_SIZE just like setup_kmalloc_cache_index_table() does.

Fixes: 822fb26bdb ("bpf: Add a hint to allocated objects.")
Reported-by: Björn Töpel <bjorn@kernel.org>
Closes: https://lore.kernel.org/bpf/87jztjmmy4.fsf@all.your.base.are.belong.to.us
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20230908133923.2675053-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-09-11 12:41:36 -07:00