2022-10-02 23:06:56 +02:00
|
|
|
/*
|
|
|
|
|
* Copyright (C) 2006 The Android Open Source Project
|
|
|
|
|
*
|
|
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
* you may not use this file except in compliance with the License.
|
|
|
|
|
* You may obtain a copy of the License at
|
|
|
|
|
*
|
|
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
*
|
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
* See the License for the specific language governing permissions and
|
|
|
|
|
* limitations under the License.
|
|
|
|
|
*/
|
|
|
|
|
package android.graphics;
|
2023-06-22 11:45:46 +02:00
|
|
|
// import android.view.HardwareRenderer;
|
2022-10-02 23:06:56 +02:00
|
|
|
/**
|
|
|
|
|
* The Path class encapsulates compound (multiple contour) geometric paths
|
|
|
|
|
* consisting of straight line segments, quadratic curves, and cubic curves.
|
|
|
|
|
* It can be drawn with canvas.drawPath(path, paint), either filled or stroked
|
|
|
|
|
* (based on the paint's Style), or it can be used for clipping or to draw
|
|
|
|
|
* text on a path.
|
|
|
|
|
*/
|
|
|
|
|
public class Path {
|
2023-06-22 11:45:46 +02:00
|
|
|
/**
|
|
|
|
|
* @hide
|
|
|
|
|
*/
|
|
|
|
|
public final int mNativePath;
|
|
|
|
|
/**
|
|
|
|
|
* @hide
|
|
|
|
|
*/
|
|
|
|
|
public boolean isSimplePath = true;
|
|
|
|
|
/**
|
|
|
|
|
* @hide
|
|
|
|
|
*/
|
|
|
|
|
public Region rects;
|
|
|
|
|
private boolean mDetectSimplePaths;
|
|
|
|
|
private Direction mLastDirection = null;
|
|
|
|
|
/**
|
|
|
|
|
* Create an empty path
|
|
|
|
|
*/
|
|
|
|
|
public Path() {
|
|
|
|
|
mNativePath = -1; /*
|
|
|
|
|
mNativePath = init1();
|
|
|
|
|
mDetectSimplePaths = HardwareRenderer.isAvailable();
|
2022-10-02 23:06:56 +02:00
|
|
|
*/
|
2023-06-22 11:45:46 +02:00
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Create a new path, copying the contents from the src path.
|
|
|
|
|
*
|
|
|
|
|
* @param src The path to copy from when initializing the new path
|
|
|
|
|
*/
|
|
|
|
|
public Path(Path src) {
|
|
|
|
|
mNativePath = -1; /*
|
|
|
|
|
int valNative = 0;
|
|
|
|
|
if (src != null) {
|
|
|
|
|
valNative = src.mNativePath;
|
|
|
|
|
isSimplePath = src.isSimplePath;
|
|
|
|
|
if (src.rects != null) {
|
|
|
|
|
rects = new Region(src.rects);
|
2022-10-02 23:06:56 +02:00
|
|
|
}
|
2023-06-22 11:45:46 +02:00
|
|
|
}
|
|
|
|
|
mNativePath = init2(valNative);
|
|
|
|
|
mDetectSimplePaths = HardwareRenderer.isAvailable();
|
|
|
|
|
*/
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Clear any lines and curves from the path, making it empty.
|
|
|
|
|
* This does NOT change the fill-type setting.
|
|
|
|
|
*/
|
|
|
|
|
public void reset() {
|
|
|
|
|
isSimplePath = true;
|
|
|
|
|
if (mDetectSimplePaths) {
|
|
|
|
|
mLastDirection = null;
|
|
|
|
|
if (rects != null)
|
|
|
|
|
rects.setEmpty();
|
|
|
|
|
}
|
|
|
|
|
// We promised not to change this, so preserve it around the native
|
|
|
|
|
// call, which does now reset fill type.
|
|
|
|
|
final FillType fillType = getFillType();
|
2023-09-19 23:22:21 +02:00
|
|
|
// native_reset(mNativePath);
|
2023-06-22 11:45:46 +02:00
|
|
|
setFillType(fillType);
|
|
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Rewinds the path: clears any lines and curves from the path but
|
|
|
|
|
* keeps the internal data structure for faster reuse.
|
|
|
|
|
*/
|
|
|
|
|
public void rewind() {
|
|
|
|
|
isSimplePath = true;
|
|
|
|
|
if (mDetectSimplePaths) {
|
|
|
|
|
mLastDirection = null;
|
|
|
|
|
if (rects != null)
|
|
|
|
|
rects.setEmpty();
|
|
|
|
|
}
|
|
|
|
|
native_rewind(mNativePath);
|
|
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Replace the contents of this with the contents of src.
|
|
|
|
|
*/
|
|
|
|
|
public void set(Path src) {
|
|
|
|
|
if (this != src) {
|
|
|
|
|
isSimplePath = src.isSimplePath;
|
|
|
|
|
native_set(mNativePath, src.mNativePath);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* The logical operations that can be performed when combining two paths.
|
|
|
|
|
*
|
|
|
|
|
* @see #op(Path, android.graphics.Path.Op)
|
|
|
|
|
* @see #op(Path, Path, android.graphics.Path.Op)
|
|
|
|
|
*/
|
|
|
|
|
public enum Op {
|
|
|
|
|
/**
|
|
|
|
|
* Subtract the second path from the first path.
|
|
|
|
|
*/
|
|
|
|
|
DIFFERENCE,
|
|
|
|
|
/**
|
|
|
|
|
* Intersect the two paths.
|
|
|
|
|
*/
|
|
|
|
|
INTERSECT,
|
|
|
|
|
/**
|
|
|
|
|
* Union (inclusive-or) the two paths.
|
|
|
|
|
*/
|
|
|
|
|
UNION,
|
|
|
|
|
/**
|
|
|
|
|
* Exclusive-or the two paths.
|
|
|
|
|
*/
|
|
|
|
|
XOR,
|
|
|
|
|
/**
|
|
|
|
|
* Subtract the first path from the second path.
|
|
|
|
|
*/
|
|
|
|
|
REVERSE_DIFFERENCE
|
|
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Set this path to the result of applying the Op to this path and the specified path.
|
|
|
|
|
* The resulting path will be constructed from non-overlapping contours.
|
|
|
|
|
* The curve order is reduced where possible so that cubics may be turned
|
|
|
|
|
* into quadratics, and quadratics maybe turned into lines.
|
|
|
|
|
*
|
|
|
|
|
* @param path The second operand (for difference, the subtrahend)
|
|
|
|
|
*
|
|
|
|
|
* @return True if operation succeeded, false otherwise and this path remains unmodified.
|
|
|
|
|
*
|
|
|
|
|
* @see Op
|
|
|
|
|
* @see #op(Path, Path, android.graphics.Path.Op)
|
|
|
|
|
*/
|
|
|
|
|
public boolean op(Path path, Op op) {
|
|
|
|
|
return op(this, path, op);
|
|
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Set this path to the result of applying the Op to the two specified paths.
|
|
|
|
|
* The resulting path will be constructed from non-overlapping contours.
|
|
|
|
|
* The curve order is reduced where possible so that cubics may be turned
|
|
|
|
|
* into quadratics, and quadratics maybe turned into lines.
|
|
|
|
|
*
|
|
|
|
|
* @param path1 The first operand (for difference, the minuend)
|
|
|
|
|
* @param path2 The second operand (for difference, the subtrahend)
|
|
|
|
|
*
|
|
|
|
|
* @return True if operation succeeded, false otherwise and this path remains unmodified.
|
|
|
|
|
*
|
|
|
|
|
* @see Op
|
|
|
|
|
* @see #op(Path, android.graphics.Path.Op)
|
|
|
|
|
*/
|
|
|
|
|
public boolean op(Path path1, Path path2, Op op) {
|
|
|
|
|
if (native_op(path1.mNativePath, path2.mNativePath, op.ordinal(), this.mNativePath)) {
|
|
|
|
|
isSimplePath = false;
|
|
|
|
|
rects = null;
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Enum for the ways a path may be filled.
|
|
|
|
|
*/
|
|
|
|
|
public enum FillType {
|
|
|
|
|
// these must match the values in SkPath.h
|
|
|
|
|
/**
|
|
|
|
|
* Specifies that "inside" is computed by a non-zero sum of signed
|
|
|
|
|
* edge crossings.
|
|
|
|
|
*/
|
|
|
|
|
WINDING(0),
|
|
|
|
|
/**
|
|
|
|
|
* Specifies that "inside" is computed by an odd number of edge
|
|
|
|
|
* crossings.
|
|
|
|
|
*/
|
|
|
|
|
EVEN_ODD(1),
|
|
|
|
|
/**
|
|
|
|
|
* Same as {@link #WINDING}, but draws outside of the path, rather than inside.
|
|
|
|
|
*/
|
|
|
|
|
INVERSE_WINDING(2),
|
|
|
|
|
/**
|
|
|
|
|
* Same as {@link #EVEN_ODD}, but draws outside of the path, rather than inside.
|
|
|
|
|
*/
|
|
|
|
|
INVERSE_EVEN_ODD(3);
|
|
|
|
|
|
|
|
|
|
FillType(int ni) {
|
|
|
|
|
nativeInt = ni;
|
|
|
|
|
}
|
|
|
|
|
final int nativeInt;
|
|
|
|
|
}
|
|
|
|
|
// these must be in the same order as their native values
|
|
|
|
|
static final FillType[] sFillTypeArray = {
|
|
|
|
|
FillType.WINDING,
|
|
|
|
|
FillType.EVEN_ODD,
|
|
|
|
|
FillType.INVERSE_WINDING,
|
|
|
|
|
FillType.INVERSE_EVEN_ODD};
|
|
|
|
|
/**
|
|
|
|
|
* Return the path's fill type. This defines how "inside" is
|
|
|
|
|
* computed. The default value is WINDING.
|
|
|
|
|
*
|
|
|
|
|
* @return the path's fill type
|
|
|
|
|
*/
|
|
|
|
|
public FillType getFillType() {
|
2023-09-19 23:22:21 +02:00
|
|
|
return FillType.WINDING;
|
|
|
|
|
// return sFillTypeArray[native_getFillType(mNativePath)];
|
2023-06-22 11:45:46 +02:00
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Set the path's fill type. This defines how "inside" is computed.
|
|
|
|
|
*
|
|
|
|
|
* @param ft The new fill type for this path
|
|
|
|
|
*/
|
|
|
|
|
public void setFillType(FillType ft) {
|
2023-09-19 23:22:21 +02:00
|
|
|
// native_setFillType(mNativePath, ft.nativeInt);
|
2023-06-22 11:45:46 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Returns true if the filltype is one of the INVERSE variants
|
|
|
|
|
*
|
|
|
|
|
* @return true if the filltype is one of the INVERSE variants
|
|
|
|
|
*/
|
|
|
|
|
public boolean isInverseFillType() {
|
|
|
|
|
final int ft = native_getFillType(mNativePath);
|
|
|
|
|
return (ft & 2) != 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Toggles the INVERSE state of the filltype
|
|
|
|
|
*/
|
|
|
|
|
public void toggleInverseFillType() {
|
|
|
|
|
int ft = native_getFillType(mNativePath);
|
|
|
|
|
ft ^= 2;
|
|
|
|
|
native_setFillType(mNativePath, ft);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Returns true if the path is empty (contains no lines or curves)
|
|
|
|
|
*
|
|
|
|
|
* @return true if the path is empty (contains no lines or curves)
|
|
|
|
|
*/
|
|
|
|
|
public boolean isEmpty() {
|
|
|
|
|
return native_isEmpty(mNativePath);
|
|
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Returns true if the path specifies a rectangle. If so, and if rect is
|
|
|
|
|
* not null, set rect to the bounds of the path. If the path does not
|
|
|
|
|
* specify a rectangle, return false and ignore rect.
|
|
|
|
|
*
|
|
|
|
|
* @param rect If not null, returns the bounds of the path if it specifies
|
|
|
|
|
* a rectangle
|
|
|
|
|
* @return true if the path specifies a rectangle
|
|
|
|
|
*/
|
|
|
|
|
public boolean isRect(RectF rect) {
|
|
|
|
|
return native_isRect(mNativePath, rect);
|
|
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Compute the bounds of the control points of the path, and write the
|
|
|
|
|
* answer into bounds. If the path contains 0 or 1 points, the bounds is
|
|
|
|
|
* set to (0,0,0,0)
|
|
|
|
|
*
|
|
|
|
|
* @param bounds Returns the computed bounds of the path's control points.
|
|
|
|
|
* @param exact This parameter is no longer used.
|
|
|
|
|
*/
|
|
|
|
|
@SuppressWarnings({"UnusedDeclaration"})
|
|
|
|
|
public void computeBounds(RectF bounds, boolean exact) {
|
|
|
|
|
native_computeBounds(mNativePath, bounds);
|
|
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Hint to the path to prepare for adding more points. This can allow the
|
|
|
|
|
* path to more efficiently allocate its storage.
|
|
|
|
|
*
|
|
|
|
|
* @param extraPtCount The number of extra points that may be added to this
|
|
|
|
|
* path
|
|
|
|
|
*/
|
|
|
|
|
public void incReserve(int extraPtCount) {
|
|
|
|
|
native_incReserve(mNativePath, extraPtCount);
|
|
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Set the beginning of the next contour to the point (x,y).
|
|
|
|
|
*
|
|
|
|
|
* @param x The x-coordinate of the start of a new contour
|
|
|
|
|
* @param y The y-coordinate of the start of a new contour
|
|
|
|
|
*/
|
|
|
|
|
public void moveTo(float x, float y) {
|
2023-09-19 23:22:21 +02:00
|
|
|
// native_moveTo(mNativePath, x, y);
|
2023-06-22 11:45:46 +02:00
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Set the beginning of the next contour relative to the last point on the
|
|
|
|
|
* previous contour. If there is no previous contour, this is treated the
|
|
|
|
|
* same as moveTo().
|
|
|
|
|
*
|
|
|
|
|
* @param dx The amount to add to the x-coordinate of the end of the
|
|
|
|
|
* previous contour, to specify the start of a new contour
|
|
|
|
|
* @param dy The amount to add to the y-coordinate of the end of the
|
|
|
|
|
* previous contour, to specify the start of a new contour
|
|
|
|
|
*/
|
|
|
|
|
public void rMoveTo(float dx, float dy) {
|
|
|
|
|
native_rMoveTo(mNativePath, dx, dy);
|
|
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Add a line from the last point to the specified point (x,y).
|
|
|
|
|
* If no moveTo() call has been made for this contour, the first point is
|
|
|
|
|
* automatically set to (0,0).
|
|
|
|
|
*
|
|
|
|
|
* @param x The x-coordinate of the end of a line
|
|
|
|
|
* @param y The y-coordinate of the end of a line
|
|
|
|
|
*/
|
|
|
|
|
public void lineTo(float x, float y) {
|
|
|
|
|
isSimplePath = false;
|
2023-09-19 23:22:21 +02:00
|
|
|
// native_lineTo(mNativePath, x, y);
|
2023-06-22 11:45:46 +02:00
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Same as lineTo, but the coordinates are considered relative to the last
|
|
|
|
|
* point on this contour. If there is no previous point, then a moveTo(0,0)
|
|
|
|
|
* is inserted automatically.
|
|
|
|
|
*
|
|
|
|
|
* @param dx The amount to add to the x-coordinate of the previous point on
|
|
|
|
|
* this contour, to specify a line
|
|
|
|
|
* @param dy The amount to add to the y-coordinate of the previous point on
|
|
|
|
|
* this contour, to specify a line
|
|
|
|
|
*/
|
|
|
|
|
public void rLineTo(float dx, float dy) {
|
|
|
|
|
isSimplePath = false;
|
|
|
|
|
native_rLineTo(mNativePath, dx, dy);
|
|
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Add a quadratic bezier from the last point, approaching control point
|
|
|
|
|
* (x1,y1), and ending at (x2,y2). If no moveTo() call has been made for
|
|
|
|
|
* this contour, the first point is automatically set to (0,0).
|
|
|
|
|
*
|
|
|
|
|
* @param x1 The x-coordinate of the control point on a quadratic curve
|
|
|
|
|
* @param y1 The y-coordinate of the control point on a quadratic curve
|
|
|
|
|
* @param x2 The x-coordinate of the end point on a quadratic curve
|
|
|
|
|
* @param y2 The y-coordinate of the end point on a quadratic curve
|
|
|
|
|
*/
|
|
|
|
|
public void quadTo(float x1, float y1, float x2, float y2) {
|
|
|
|
|
isSimplePath = false;
|
2023-09-19 23:22:21 +02:00
|
|
|
// native_quadTo(mNativePath, x1, y1, x2, y2);
|
2023-06-22 11:45:46 +02:00
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Same as quadTo, but the coordinates are considered relative to the last
|
|
|
|
|
* point on this contour. If there is no previous point, then a moveTo(0,0)
|
|
|
|
|
* is inserted automatically.
|
|
|
|
|
*
|
|
|
|
|
* @param dx1 The amount to add to the x-coordinate of the last point on
|
|
|
|
|
* this contour, for the control point of a quadratic curve
|
|
|
|
|
* @param dy1 The amount to add to the y-coordinate of the last point on
|
|
|
|
|
* this contour, for the control point of a quadratic curve
|
|
|
|
|
* @param dx2 The amount to add to the x-coordinate of the last point on
|
|
|
|
|
* this contour, for the end point of a quadratic curve
|
|
|
|
|
* @param dy2 The amount to add to the y-coordinate of the last point on
|
|
|
|
|
* this contour, for the end point of a quadratic curve
|
|
|
|
|
*/
|
|
|
|
|
public void rQuadTo(float dx1, float dy1, float dx2, float dy2) {
|
|
|
|
|
isSimplePath = false;
|
|
|
|
|
native_rQuadTo(mNativePath, dx1, dy1, dx2, dy2);
|
|
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Add a cubic bezier from the last point, approaching control points
|
|
|
|
|
* (x1,y1) and (x2,y2), and ending at (x3,y3). If no moveTo() call has been
|
|
|
|
|
* made for this contour, the first point is automatically set to (0,0).
|
|
|
|
|
*
|
|
|
|
|
* @param x1 The x-coordinate of the 1st control point on a cubic curve
|
|
|
|
|
* @param y1 The y-coordinate of the 1st control point on a cubic curve
|
|
|
|
|
* @param x2 The x-coordinate of the 2nd control point on a cubic curve
|
|
|
|
|
* @param y2 The y-coordinate of the 2nd control point on a cubic curve
|
|
|
|
|
* @param x3 The x-coordinate of the end point on a cubic curve
|
|
|
|
|
* @param y3 The y-coordinate of the end point on a cubic curve
|
|
|
|
|
*/
|
|
|
|
|
public void cubicTo(float x1, float y1, float x2, float y2,
|
|
|
|
|
float x3, float y3) {
|
|
|
|
|
isSimplePath = false;
|
|
|
|
|
native_cubicTo(mNativePath, x1, y1, x2, y2, x3, y3);
|
|
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Same as cubicTo, but the coordinates are considered relative to the
|
|
|
|
|
* current point on this contour. If there is no previous point, then a
|
|
|
|
|
* moveTo(0,0) is inserted automatically.
|
|
|
|
|
*/
|
|
|
|
|
public void rCubicTo(float x1, float y1, float x2, float y2,
|
|
|
|
|
float x3, float y3) {
|
|
|
|
|
isSimplePath = false;
|
|
|
|
|
native_rCubicTo(mNativePath, x1, y1, x2, y2, x3, y3);
|
|
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Append the specified arc to the path as a new contour. If the start of
|
|
|
|
|
* the path is different from the path's current last point, then an
|
|
|
|
|
* automatic lineTo() is added to connect the current contour to the
|
|
|
|
|
* start of the arc. However, if the path is empty, then we call moveTo()
|
|
|
|
|
* with the first point of the arc. The sweep angle is tread mod 360.
|
|
|
|
|
*
|
|
|
|
|
* @param oval The bounds of oval defining shape and size of the arc
|
|
|
|
|
* @param startAngle Starting angle (in degrees) where the arc begins
|
|
|
|
|
* @param sweepAngle Sweep angle (in degrees) measured clockwise, treated
|
|
|
|
|
* mod 360.
|
|
|
|
|
* @param forceMoveTo If true, always begin a new contour with the arc
|
|
|
|
|
*/
|
|
|
|
|
public void arcTo(RectF oval, float startAngle, float sweepAngle,
|
|
|
|
|
boolean forceMoveTo) {
|
|
|
|
|
isSimplePath = false;
|
|
|
|
|
native_arcTo(mNativePath, oval, startAngle, sweepAngle, forceMoveTo);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Append the specified arc to the path as a new contour. If the start of
|
|
|
|
|
* the path is different from the path's current last point, then an
|
|
|
|
|
* automatic lineTo() is added to connect the current contour to the
|
|
|
|
|
* start of the arc. However, if the path is empty, then we call moveTo()
|
|
|
|
|
* with the first point of the arc.
|
|
|
|
|
*
|
|
|
|
|
* @param oval The bounds of oval defining shape and size of the arc
|
|
|
|
|
* @param startAngle Starting angle (in degrees) where the arc begins
|
|
|
|
|
* @param sweepAngle Sweep angle (in degrees) measured clockwise
|
|
|
|
|
*/
|
|
|
|
|
public void arcTo(RectF oval, float startAngle, float sweepAngle) {
|
|
|
|
|
isSimplePath = false;
|
|
|
|
|
native_arcTo(mNativePath, oval, startAngle, sweepAngle, false);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Close the current contour. If the current point is not equal to the
|
|
|
|
|
* first point of the contour, a line segment is automatically added.
|
|
|
|
|
*/
|
|
|
|
|
public void close() {
|
|
|
|
|
isSimplePath = false;
|
2023-09-19 23:22:21 +02:00
|
|
|
// native_close(mNativePath);
|
2023-06-22 11:45:46 +02:00
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Specifies how closed shapes (e.g. rects, ovals) are oriented when they
|
|
|
|
|
* are added to a path.
|
|
|
|
|
*/
|
|
|
|
|
public enum Direction {
|
|
|
|
|
/**
|
|
|
|
|
* clockwise
|
|
|
|
|
*/
|
|
|
|
|
CW(1), // must match enum in SkPath.h
|
|
|
|
|
/**
|
|
|
|
|
* counter-clockwise
|
|
|
|
|
*/
|
|
|
|
|
CCW(2); // must match enum in SkPath.h
|
|
|
|
|
|
|
|
|
|
Direction(int ni) {
|
|
|
|
|
nativeInt = ni;
|
|
|
|
|
}
|
|
|
|
|
final int nativeInt;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private void detectSimplePath(float left, float top, float right, float bottom, Direction dir) {
|
|
|
|
|
if (mDetectSimplePaths) {
|
|
|
|
|
if (mLastDirection == null) {
|
|
|
|
|
mLastDirection = dir;
|
|
|
|
|
}
|
|
|
|
|
if (mLastDirection != dir) {
|
|
|
|
|
isSimplePath = false;
|
|
|
|
|
} else {
|
|
|
|
|
if (rects == null)
|
|
|
|
|
rects = new Region();
|
|
|
|
|
rects.op((int)left, (int)top, (int)right, (int)bottom, Region.Op.UNION);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Add a closed rectangle contour to the path
|
|
|
|
|
*
|
|
|
|
|
* @param rect The rectangle to add as a closed contour to the path
|
|
|
|
|
* @param dir The direction to wind the rectangle's contour
|
|
|
|
|
*/
|
|
|
|
|
public void addRect(RectF rect, Direction dir) {
|
|
|
|
|
if (rect == null) {
|
|
|
|
|
throw new NullPointerException("need rect parameter");
|
|
|
|
|
}
|
|
|
|
|
detectSimplePath(rect.left, rect.top, rect.right, rect.bottom, dir);
|
|
|
|
|
native_addRect(mNativePath, rect, dir.nativeInt);
|
|
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Add a closed rectangle contour to the path
|
|
|
|
|
*
|
|
|
|
|
* @param left The left side of a rectangle to add to the path
|
|
|
|
|
* @param top The top of a rectangle to add to the path
|
|
|
|
|
* @param right The right side of a rectangle to add to the path
|
|
|
|
|
* @param bottom The bottom of a rectangle to add to the path
|
|
|
|
|
* @param dir The direction to wind the rectangle's contour
|
|
|
|
|
*/
|
|
|
|
|
public void addRect(float left, float top, float right, float bottom, Direction dir) {
|
|
|
|
|
detectSimplePath(left, top, right, bottom, dir);
|
|
|
|
|
native_addRect(mNativePath, left, top, right, bottom, dir.nativeInt);
|
|
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Add a closed oval contour to the path
|
|
|
|
|
*
|
|
|
|
|
* @param oval The bounds of the oval to add as a closed contour to the path
|
|
|
|
|
* @param dir The direction to wind the oval's contour
|
|
|
|
|
*/
|
|
|
|
|
public void addOval(RectF oval, Direction dir) {
|
|
|
|
|
if (oval == null) {
|
|
|
|
|
throw new NullPointerException("need oval parameter");
|
|
|
|
|
}
|
|
|
|
|
isSimplePath = false;
|
|
|
|
|
native_addOval(mNativePath, oval, dir.nativeInt);
|
|
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Add a closed circle contour to the path
|
|
|
|
|
*
|
|
|
|
|
* @param x The x-coordinate of the center of a circle to add to the path
|
|
|
|
|
* @param y The y-coordinate of the center of a circle to add to the path
|
|
|
|
|
* @param radius The radius of a circle to add to the path
|
|
|
|
|
* @param dir The direction to wind the circle's contour
|
|
|
|
|
*/
|
|
|
|
|
public void addCircle(float x, float y, float radius, Direction dir) {
|
|
|
|
|
isSimplePath = false;
|
|
|
|
|
native_addCircle(mNativePath, x, y, radius, dir.nativeInt);
|
|
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Add the specified arc to the path as a new contour.
|
|
|
|
|
*
|
|
|
|
|
* @param oval The bounds of oval defining the shape and size of the arc
|
|
|
|
|
* @param startAngle Starting angle (in degrees) where the arc begins
|
|
|
|
|
* @param sweepAngle Sweep angle (in degrees) measured clockwise
|
|
|
|
|
*/
|
|
|
|
|
public void addArc(RectF oval, float startAngle, float sweepAngle) {
|
|
|
|
|
if (oval == null) {
|
|
|
|
|
throw new NullPointerException("need oval parameter");
|
|
|
|
|
}
|
|
|
|
|
isSimplePath = false;
|
|
|
|
|
native_addArc(mNativePath, oval, startAngle, sweepAngle);
|
|
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Add a closed round-rectangle contour to the path
|
|
|
|
|
*
|
|
|
|
|
* @param rect The bounds of a round-rectangle to add to the path
|
|
|
|
|
* @param rx The x-radius of the rounded corners on the round-rectangle
|
|
|
|
|
* @param ry The y-radius of the rounded corners on the round-rectangle
|
|
|
|
|
* @param dir The direction to wind the round-rectangle's contour
|
|
|
|
|
*/
|
|
|
|
|
public void addRoundRect(RectF rect, float rx, float ry, Direction dir) {
|
|
|
|
|
if (rect == null) {
|
|
|
|
|
throw new NullPointerException("need rect parameter");
|
|
|
|
|
}
|
|
|
|
|
isSimplePath = false;
|
|
|
|
|
native_addRoundRect(mNativePath, rect, rx, ry, dir.nativeInt);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Add a closed round-rectangle contour to the path. Each corner receives
|
|
|
|
|
* two radius values [X, Y]. The corners are ordered top-left, top-right,
|
|
|
|
|
* bottom-right, bottom-left
|
|
|
|
|
*
|
|
|
|
|
* @param rect The bounds of a round-rectangle to add to the path
|
|
|
|
|
* @param radii Array of 8 values, 4 pairs of [X,Y] radii
|
|
|
|
|
* @param dir The direction to wind the round-rectangle's contour
|
|
|
|
|
*/
|
|
|
|
|
public void addRoundRect(RectF rect, float[] radii, Direction dir) {
|
|
|
|
|
if (rect == null) {
|
|
|
|
|
throw new NullPointerException("need rect parameter");
|
|
|
|
|
}
|
|
|
|
|
if (radii.length < 8) {
|
|
|
|
|
throw new ArrayIndexOutOfBoundsException("radii[] needs 8 values");
|
|
|
|
|
}
|
|
|
|
|
isSimplePath = false;
|
|
|
|
|
native_addRoundRect(mNativePath, rect, radii, dir.nativeInt);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Add a copy of src to the path, offset by (dx,dy)
|
|
|
|
|
*
|
|
|
|
|
* @param src The path to add as a new contour
|
|
|
|
|
* @param dx The amount to translate the path in X as it is added
|
|
|
|
|
*/
|
|
|
|
|
public void addPath(Path src, float dx, float dy) {
|
|
|
|
|
isSimplePath = false;
|
|
|
|
|
native_addPath(mNativePath, src.mNativePath, dx, dy);
|
|
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Add a copy of src to the path
|
|
|
|
|
*
|
|
|
|
|
* @param src The path that is appended to the current path
|
|
|
|
|
*/
|
|
|
|
|
public void addPath(Path src) {
|
|
|
|
|
isSimplePath = false;
|
|
|
|
|
native_addPath(mNativePath, src.mNativePath);
|
|
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Add a copy of src to the path, transformed by matrix
|
|
|
|
|
*
|
|
|
|
|
* @param src The path to add as a new contour
|
|
|
|
|
*/
|
|
|
|
|
public void addPath(Path src, Matrix matrix) {
|
|
|
|
|
if (!src.isSimplePath)
|
|
|
|
|
isSimplePath = false;
|
|
|
|
|
native_addPath(mNativePath, src.mNativePath, matrix.native_instance);
|
|
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Offset the path by (dx,dy), returning true on success
|
|
|
|
|
*
|
|
|
|
|
* @param dx The amount in the X direction to offset the entire path
|
|
|
|
|
* @param dy The amount in the Y direction to offset the entire path
|
|
|
|
|
* @param dst The translated path is written here. If this is null, then
|
|
|
|
|
* the original path is modified.
|
|
|
|
|
*/
|
|
|
|
|
public void offset(float dx, float dy, Path dst) {
|
|
|
|
|
int dstNative = 0;
|
|
|
|
|
if (dst != null) {
|
|
|
|
|
dstNative = dst.mNativePath;
|
|
|
|
|
dst.isSimplePath = false;
|
|
|
|
|
}
|
|
|
|
|
native_offset(mNativePath, dx, dy, dstNative);
|
|
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Offset the path by (dx,dy), returning true on success
|
|
|
|
|
*
|
|
|
|
|
* @param dx The amount in the X direction to offset the entire path
|
|
|
|
|
* @param dy The amount in the Y direction to offset the entire path
|
|
|
|
|
*/
|
|
|
|
|
public void offset(float dx, float dy) {
|
|
|
|
|
isSimplePath = false;
|
|
|
|
|
native_offset(mNativePath, dx, dy);
|
|
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Sets the last point of the path.
|
|
|
|
|
*
|
|
|
|
|
* @param dx The new X coordinate for the last point
|
|
|
|
|
* @param dy The new Y coordinate for the last point
|
|
|
|
|
*/
|
|
|
|
|
public void setLastPoint(float dx, float dy) {
|
|
|
|
|
isSimplePath = false;
|
|
|
|
|
native_setLastPoint(mNativePath, dx, dy);
|
|
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Transform the points in this path by matrix, and write the answer
|
|
|
|
|
* into dst. If dst is null, then the the original path is modified.
|
|
|
|
|
*
|
|
|
|
|
* @param matrix The matrix to apply to the path
|
|
|
|
|
* @param dst The transformed path is written here. If dst is null,
|
|
|
|
|
* then the the original path is modified
|
|
|
|
|
*/
|
|
|
|
|
public void transform(Matrix matrix, Path dst) {
|
|
|
|
|
int dstNative = 0;
|
|
|
|
|
if (dst != null) {
|
|
|
|
|
dst.isSimplePath = false;
|
|
|
|
|
dstNative = dst.mNativePath;
|
|
|
|
|
}
|
|
|
|
|
native_transform(mNativePath, matrix.native_instance, dstNative);
|
|
|
|
|
}
|
|
|
|
|
/**
|
|
|
|
|
* Transform the points in this path by matrix.
|
|
|
|
|
*
|
|
|
|
|
* @param matrix The matrix to apply to the path
|
|
|
|
|
*/
|
|
|
|
|
public void transform(Matrix matrix) {
|
|
|
|
|
isSimplePath = false;
|
|
|
|
|
native_transform(mNativePath, matrix.native_instance);
|
|
|
|
|
}
|
|
|
|
|
protected void finalize() throws Throwable {
|
|
|
|
|
try {
|
2023-08-17 10:46:24 +02:00
|
|
|
// finalizer(mNativePath);
|
2023-06-22 11:45:46 +02:00
|
|
|
} finally {
|
|
|
|
|
super.finalize();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
final int ni() {
|
|
|
|
|
return mNativePath;
|
|
|
|
|
}
|
|
|
|
|
private static native int init1();
|
|
|
|
|
private static native int init2(int nPath);
|
|
|
|
|
private static native void native_reset(int nPath);
|
|
|
|
|
private static native void native_rewind(int nPath);
|
|
|
|
|
private static native void native_set(int native_dst, int native_src);
|
|
|
|
|
private static native int native_getFillType(int nPath);
|
|
|
|
|
private static native void native_setFillType(int nPath, int ft);
|
|
|
|
|
private static native boolean native_isEmpty(int nPath);
|
|
|
|
|
private static native boolean native_isRect(int nPath, RectF rect);
|
|
|
|
|
private static native void native_computeBounds(int nPath, RectF bounds);
|
|
|
|
|
private static native void native_incReserve(int nPath, int extraPtCount);
|
|
|
|
|
private static native void native_moveTo(int nPath, float x, float y);
|
|
|
|
|
private static native void native_rMoveTo(int nPath, float dx, float dy);
|
|
|
|
|
private static native void native_lineTo(int nPath, float x, float y);
|
|
|
|
|
private static native void native_rLineTo(int nPath, float dx, float dy);
|
|
|
|
|
private static native void native_quadTo(int nPath, float x1, float y1,
|
|
|
|
|
float x2, float y2);
|
|
|
|
|
private static native void native_rQuadTo(int nPath, float dx1, float dy1,
|
|
|
|
|
float dx2, float dy2);
|
|
|
|
|
private static native void native_cubicTo(int nPath, float x1, float y1,
|
|
|
|
|
float x2, float y2, float x3, float y3);
|
|
|
|
|
private static native void native_rCubicTo(int nPath, float x1, float y1,
|
|
|
|
|
float x2, float y2, float x3, float y3);
|
|
|
|
|
private static native void native_arcTo(int nPath, RectF oval,
|
|
|
|
|
float startAngle, float sweepAngle, boolean forceMoveTo);
|
|
|
|
|
private static native void native_close(int nPath);
|
|
|
|
|
private static native void native_addRect(int nPath, RectF rect, int dir);
|
|
|
|
|
private static native void native_addRect(int nPath, float left, float top,
|
|
|
|
|
float right, float bottom, int dir);
|
|
|
|
|
private static native void native_addOval(int nPath, RectF oval, int dir);
|
|
|
|
|
private static native void native_addCircle(int nPath, float x, float y, float radius, int dir);
|
|
|
|
|
private static native void native_addArc(int nPath, RectF oval,
|
|
|
|
|
float startAngle, float sweepAngle);
|
|
|
|
|
private static native void native_addRoundRect(int nPath, RectF rect,
|
|
|
|
|
float rx, float ry, int dir);
|
|
|
|
|
private static native void native_addRoundRect(int nPath, RectF r, float[] radii, int dir);
|
|
|
|
|
private static native void native_addPath(int nPath, int src, float dx, float dy);
|
|
|
|
|
private static native void native_addPath(int nPath, int src);
|
|
|
|
|
private static native void native_addPath(int nPath, int src, int matrix);
|
|
|
|
|
private static native void native_offset(int nPath, float dx, float dy, int dst_path);
|
|
|
|
|
private static native void native_offset(int nPath, float dx, float dy);
|
|
|
|
|
private static native void native_setLastPoint(int nPath, float dx, float dy);
|
|
|
|
|
private static native void native_transform(int nPath, int matrix, int dst_path);
|
|
|
|
|
private static native void native_transform(int nPath, int matrix);
|
|
|
|
|
private static native boolean native_op(int path1, int path2, int op, int result);
|
|
|
|
|
private static native void finalizer(int nPath);
|
2022-10-02 23:06:56 +02:00
|
|
|
}
|