This reverts commit 9a9259a78c.
It seems schedtune_init_cgroups and schedtune_boostgroup_init
all call raw_spin_lock_init(&bg->lock), it is wrong.
Change-Id: Icbdfeaf81f4fb59fdcc02623ac5e26d41bd1e496
Signed-off-by: Tao Huang <huangtao@rock-chips.com>
LSK 17.07 v4.4-android
* tag 'lsk-v4.4-17.07-android': (402 commits)
dt/vendor-prefixes: remove redundant vendor
Linux 4.4.77
saa7134: fix warm Medion 7134 EEPROM read
x86/mm/pat: Don't report PAT on CPUs that don't support it
ext4: check return value of kstrtoull correctly in reserved_clusters_store
staging: comedi: fix clean-up of comedi_class in comedi_init()
staging: vt6556: vnt_start Fix missing call to vnt_key_init_table.
tcp: fix tcp_mark_head_lost to check skb len before fragmenting
md: fix super_offset endianness in super_1_rdev_size_change
md: fix incorrect use of lexx_to_cpu in does_sb_need_changing
perf tools: Use readdir() instead of deprecated readdir_r() again
perf tests: Remove wrong semicolon in while loop in CQM test
perf trace: Do not process PERF_RECORD_LOST twice
perf dwarf: Guard !x86_64 definitions under #ifdef else clause
perf pmu: Fix misleadingly indented assignment (whitespace)
perf annotate browser: Fix behaviour of Shift-Tab with nothing focussed
perf tools: Remove duplicate const qualifier
perf script: Use readdir() instead of deprecated readdir_r()
perf thread_map: Use readdir() instead of deprecated readdir_r()
perf tools: Use readdir() instead of deprecated readdir_r()
...
Conflicts:
Makefile
drivers/Kconfig
drivers/Makefile
drivers/usb/dwc3/gadget.c
Change-Id: Ib4aae2e34ebbf0d7953c748a33f673acb3e744fc
commit 425fffd886bae3d127a08fa6a17f2e31e24ed7ff upstream.
Currently, inputting the following command will succeed but actually the
value will be truncated:
# echo 0x12ffffffff > /proc/sys/net/ipv4/tcp_notsent_lowat
This is not friendly to the user, so instead, we should report error
when the value is larger than UINT_MAX.
Fixes: e7d316a02f68 ("sysctl: handle error writing UINT_MAX to u32 fields")
Signed-off-by: Liping Zhang <zlpnobody@gmail.com>
Cc: Subash Abhinov Kasiviswanathan <subashab@codeaurora.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5380e5644afbba9e3d229c36771134976f05c91e upstream.
I saw some very confusing sysctl output on my system:
# cat /proc/sys/net/core/xfrm_aevent_rseqth
-2
# cat /proc/sys/net/core/xfrm_aevent_etime
-10
# cat /proc/sys/net/ipv4/tcp_notsent_lowat
-4294967295
Because we forget to set the *negp flag in proc_douintvec, so it will
become a garbage value.
Since the value related to proc_douintvec is always an unsigned integer,
so we can set *negp to false explictily to fix this issue.
Fixes: e7d316a02f68 ("sysctl: handle error writing UINT_MAX to u32 fields")
Signed-off-by: Liping Zhang <zlpnobody@gmail.com>
Cc: Subash Abhinov Kasiviswanathan <subashab@codeaurora.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9e52b32567126fe146f198971364f68d3bc5233f upstream.
Always try to parse an address, since kstrtoul() will safely fail when
given a symbol as input. If that fails (which will be the case for a
symbol), try to parse a symbol instead.
This allows creating a probe such as:
p:probe/vlan_gro_receive 8021q:vlan_gro_receive+0
Which is necessary for this command to work:
perf probe -m 8021q -a vlan_gro_receive
Link: http://lkml.kernel.org/r/fd72d666f45b114e2c5b9cf7e27b91de1ec966f1.1498122881.git.sd@queasysnail.net
Fixes: 413d37d1e ("tracing: Add kprobe-based event tracer")
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Sabrina Dubroca <sd@queasysnail.net>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Fixes: e00ebdcb8a ("sched/tune: don't use schedtune before it is ready")
Change-Id: I86312b6d271365cfb94e6ca570771a6bca46e67b
Signed-off-by: Huang, Tao <huangtao@rock-chips.com>
LSK 17.06 v4.4-android
* tag 'lsk-v4.4-17.06-android': (134 commits)
ANDROID: sdcardfs: remove dead function open_flags_to_access_mode()
ANDROID: android-base.cfg: split out arm64-specific configs
usb: gadget: f_fs: Fix possibe deadlock
ANDROID: uid_sys_stats: check previous uid_entry before call find_or_register_uid
ANDROID: sdcardfs: d_splice_alias can return error values
android: base-cfg: disable CONFIG_NFS_FS and CONFIG_NFSD
schedstats/eas: guard properly to avoid breaking non-smp schedstats users
BACKPORT: f2fs: sanity check size of nat and sit cache
FROMLIST: f2fs: sanity check checkpoint segno and blkoff
sched/tune: don't use schedtune before it is ready
sched/fair: use SCHED_CAPACITY_SCALE for energy normalization
sched/{fair,tune}: use reciprocal_value to compute boost margin
sched/tune: Initialize raw_spin_lock in boosted_groups
sched/tune: report when SchedTune has not been initialized
sched/tune: fix sched_energy_diff tracepoint
sched/tune: increase group count to 5
cpufreq/schedutil: use boosted_cpu_util for PELT to match WALT
sched/fair: Fix sched_group_energy() to support per-cpu capacity states
sched/fair: discount task contribution to find CPU with lowest utilization
sched/fair: ensure utilization signals are synchronized before use
...
[ Upstream commit 0d0e57697f162da4aa218b5feafe614fb666db07 ]
The patch fixes two things at once:
1) It checks the env->allow_ptr_leaks and only prints the map address to
the log if we have the privileges to do so, otherwise it just dumps 0
as we would when kptr_restrict is enabled on %pK. Given the latter is
off by default and not every distro sets it, I don't want to rely on
this, hence the 0 by default for unprivileged.
2) Printing of ldimm64 in the verifier log is currently broken in that
we don't print the full immediate, but only the 32 bit part of the
first insn part for ldimm64. Thus, fix this up as well; it's okay to
access, since we verified all ldimm64 earlier already (including just
constants) through replace_map_fd_with_map_ptr().
Fixes: 1be7f75d16 ("bpf: enable non-root eBPF programs")
Fixes: cbd3570086 ("bpf: verifier (add ability to receive verification log)")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Bug: 62199770
Change-Id: I62ee47d06ddc669ba2863e8cf24f8f3e7683a461
commit 6e5f32f7a43f45ee55c401c0b9585eb01f9629a8 upstream.
If we crossed a sample window while in NO_HZ we will add LOAD_FREQ to
the pending sample window time on exit, setting the next update not
one window into the future, but two.
This situation on exiting NO_HZ is described by:
this_rq->calc_load_update < jiffies < calc_load_update
In this scenario, what we should be doing is:
this_rq->calc_load_update = calc_load_update [ next window ]
But what we actually do is:
this_rq->calc_load_update = calc_load_update + LOAD_FREQ [ next+1 window ]
This has the effect of delaying load average updates for potentially
up to ~9seconds.
This can result in huge spikes in the load average values due to
per-cpu uninterruptible task counts being out of sync when accumulated
across all CPUs.
It's safe to update the per-cpu active count if we wake between sample
windows because any load that we left in 'calc_load_idle' will have
been zero'd when the idle load was folded in calc_global_load().
This issue is easy to reproduce before,
commit 9d89c257df ("sched/fair: Rewrite runnable load and utilization average tracking")
just by forking short-lived process pipelines built from ps(1) and
grep(1) in a loop. I'm unable to reproduce the spikes after that
commit, but the bug still seems to be present from code review.
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Fixes: commit 5167e8d ("sched/nohz: Rewrite and fix load-avg computation -- again")
Link: http://lkml.kernel.org/r/20170217120731.11868-2-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ceea5e3771ed2378668455fa21861bead7504df5 upstream.
In tests, which excercise switching of clocksources, a NULL
pointer dereference can be observed on AMR64 platforms in the
clocksource read() function:
u64 clocksource_mmio_readl_down(struct clocksource *c)
{
return ~(u64)readl_relaxed(to_mmio_clksrc(c)->reg) & c->mask;
}
This is called from the core timekeeping code via:
cycle_now = tkr->read(tkr->clock);
tkr->read is the cached tkr->clock->read() function pointer.
When the clocksource is changed then tkr->clock and tkr->read
are updated sequentially. The code above results in a sequential
load operation of tkr->read and tkr->clock as well.
If the store to tkr->clock hits between the loads of tkr->read
and tkr->clock, then the old read() function is called with the
new clock pointer. As a consequence the read() function
dereferences a different data structure and the resulting 'reg'
pointer can point anywhere including NULL.
This problem was introduced when the timekeeping code was
switched over to use struct tk_read_base. Before that, it was
theoretically possible as well when the compiler decided to
reload clock in the code sequence:
now = tk->clock->read(tk->clock);
Add a helper function which avoids the issue by reading
tk_read_base->clock once into a local variable clk and then issue
the read function via clk->read(clk). This guarantees that the
read() function always gets the proper clocksource pointer handed
in.
Since there is now no use for the tkr.read pointer, this patch
also removes it, and to address stopping the fast timekeeper
during suspend/resume, it introduces a dummy clocksource to use
rather then just a dummy read function.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Stephen Boyd <stephen.boyd@linaro.org>
Cc: Miroslav Lichvar <mlichvar@redhat.com>
Cc: Daniel Mentz <danielmentz@google.com>
Link: http://lkml.kernel.org/r/1496965462-20003-2-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 57db7e4a2d92c2d3dfbca4ef8057849b2682436b upstream.
Thomas Gleixner wrote:
> The CRIU support added a 'feature' which allows a user space task to send
> arbitrary (kernel) signals to itself. The changelog says:
>
> The kernel prevents sending of siginfo with positive si_code, because
> these codes are reserved for kernel. I think we can allow a task to
> send such a siginfo to itself. This operation should not be dangerous.
>
> Quite contrary to that claim, it turns out that it is outright dangerous
> for signals with info->si_code == SI_TIMER. The following code sequence in
> a user space task allows to crash the kernel:
>
> id = timer_create(CLOCK_XXX, ..... signo = SIGX);
> timer_set(id, ....);
> info->si_signo = SIGX;
> info->si_code = SI_TIMER:
> info->_sifields._timer._tid = id;
> info->_sifields._timer._sys_private = 2;
> rt_[tg]sigqueueinfo(..., SIGX, info);
> sigemptyset(&sigset);
> sigaddset(&sigset, SIGX);
> rt_sigtimedwait(sigset, info);
>
> For timers based on CLOCK_PROCESS_CPUTIME_ID, CLOCK_THREAD_CPUTIME_ID this
> results in a kernel crash because sigwait() dequeues the signal and the
> dequeue code observes:
>
> info->si_code == SI_TIMER && info->_sifields._timer._sys_private != 0
>
> which triggers the following callchain:
>
> do_schedule_next_timer() -> posix_cpu_timer_schedule() -> arm_timer()
>
> arm_timer() executes a list_add() on the timer, which is already armed via
> the timer_set() syscall. That's a double list add which corrupts the posix
> cpu timer list. As a consequence the kernel crashes on the next operation
> touching the posix cpu timer list.
>
> Posix clocks which are internally implemented based on hrtimers are not
> affected by this because hrtimer_start() can handle already armed timers
> nicely, but it's a reliable way to trigger the WARN_ON() in
> hrtimer_forward(), which complains about calling that function on an
> already armed timer.
This problem has existed since the posix timer code was merged into
2.5.63. A few releases earlier in 2.5.60 ptrace gained the ability to
inject not just a signal (which linux has supported since 1.0) but the
full siginfo of a signal.
The core problem is that the code will reschedule in response to
signals getting dequeued not just for signals the timers sent but
for other signals that happen to a si_code of SI_TIMER.
Avoid this confusion by testing to see if the queued signal was
preallocated as all timer signals are preallocated, and so far
only the timer code preallocates signals.
Move the check for if a timer needs to be rescheduled up into
collect_signal where the preallocation check must be performed,
and pass the result back to dequeue_signal where the code reschedules
timers. This makes it clear why the code cares about preallocated
timers.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
History Tree: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git
Reference: 66dd34ad31 ("signal: allow to send any siginfo to itself")
Reference: 1669ce53e2ff ("Add PTRACE_GETSIGINFO and PTRACE_SETSIGINFO")
Fixes: db8b50ba75f2 ("[PATCH] POSIX clocks & timers")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ff86bf0c65f14346bf2440534f9ba5ac232c39a0 upstream.
The alarmtimer code has another source of potentially rearming itself too
fast. Interval timers with a very samll interval have a similar CPU hog
effect as the previously fixed overflow issue.
The reason is that alarmtimers do not implement the normal protection
against this kind of problem which the other posix timer use:
timer expires -> queue signal -> deliver signal -> rearm timer
This scheme brings the rearming under scheduler control and prevents
permanently firing timers which hog the CPU.
Bringing this scheme to the alarm timer code is a major overhaul because it
lacks all the necessary mechanisms completely.
So for a quick fix limit the interval to one jiffie. This is not
problematic in practice as alarmtimers are usually backed by an RTC for
suspend which have 1 second resolution. It could be therefor argued that
the resolution of this clock should be set to 1 second in general, but
that's outside the scope of this fix.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kostya Serebryany <kcc@google.com>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Link: http://lkml.kernel.org/r/20170530211655.896767100@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f4781e76f90df7aec400635d73ea4c35ee1d4765 upstream.
Andrey reported a alartimer related RCU stall while fuzzing the kernel with
syzkaller.
The reason for this is an overflow in ktime_add() which brings the
resulting time into negative space and causes immediate expiry of the
timer. The following rearm with a small interval does not bring the timer
back into positive space due to the same issue.
This results in a permanent firing alarmtimer which hogs the CPU.
Use ktime_add_safe() instead which detects the overflow and clamps the
result to KTIME_SEC_MAX.
Reported-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kostya Serebryany <kcc@google.com>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Link: http://lkml.kernel.org/r/20170530211655.802921648@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add appropriate #ifdef guards to ensure the smp-only easstats structs
are not used when smp is not enabled. Arnd got a report from buildbot,
analysed it, and pointed out exactly what the issue was.
Reported-by: "Arnd Bergmann" <arnd@arndb.de>
Suggested-by: "Arnd Bergmann" <arnd@arndb.de>
Fixes: 4b85765a3dd9 ("sched/fair: Add eas (& cas)
specific rq, sd and task stats")
Signed-off-by: Chris Redpath <chris.redpath@arm.com>
Change-Id: I60554dea20137f6774db3f59b4afd40a06554cfc
When EAS is enabled during boot, we have to be careful not to use
schedtune from fair.c before it is ready or it will warn us and we'll
get a traceback in the console.
Change-Id: I1a5cf29b18af626545c636c51219f9ed497c19fa
Signed-off-by: Chris Redpath <chris.redpath@arm.com>