Commit Graph

652 Commits

Author SHA1 Message Date
Gilad Ben-Yossef
74046494ea mm: only IPI CPUs to drain local pages if they exist
Calculate a cpumask of CPUs with per-cpu pages in any zone and only send
an IPI requesting CPUs to drain these pages to the buddy allocator if they
actually have pages when asked to flush.

This patch saves 85%+ of IPIs asking to drain per-cpu pages in case of
severe memory pressure that leads to OOM since in these cases multiple,
possibly concurrent, allocation requests end up in the direct reclaim code
path so when the per-cpu pages end up reclaimed on first allocation
failure for most of the proceeding allocation attempts until the memory
pressure is off (possibly via the OOM killer) there are no per-cpu pages
on most CPUs (and there can easily be hundreds of them).

This also has the side effect of shortening the average latency of direct
reclaim by 1 or more order of magnitude since waiting for all the CPUs to
ACK the IPI takes a long time.

Tested by running "hackbench 400" on a 8 CPU x86 VM and observing the
difference between the number of direct reclaim attempts that end up in
drain_all_pages() and those were more then 1/2 of the online CPU had any
per-cpu page in them, using the vmstat counters introduced in the next
patch in the series and using proc/interrupts.

In the test sceanrio, this was seen to save around 3600 global
IPIs after trigerring an OOM on a concurrent workload:

$ cat /proc/vmstat | tail -n 2
pcp_global_drain 0
pcp_global_ipi_saved 0

$ cat /proc/interrupts | grep CAL
CAL:          1          2          1          2
          2          2          2          2   Function call interrupts

$ hackbench 400
[OOM messages snipped]

$ cat /proc/vmstat | tail -n 2
pcp_global_drain 3647
pcp_global_ipi_saved 3642

$ cat /proc/interrupts | grep CAL
CAL:          6         13          6          3
          3          3         1 2          7   Function call interrupts

Please note that if the global drain is removed from the direct reclaim
path as a patch from Mel Gorman currently suggests this should be replaced
with an on_each_cpu_cond invocation.

Signed-off-by: Gilad Ben-Yossef <gilad@benyossef.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Acked-by: Michal Nazarewicz <mina86@mina86.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-28 17:14:35 -07:00
David Rientjes
29fd66d289 mm, coredump: fail allocations when coredumping instead of oom killing
The size of coredump files is limited by RLIMIT_CORE, however, allocating
large amounts of memory results in three negative consequences:

 - the coredumping process may be chosen for oom kill and quickly deplete
   all memory reserves in oom conditions preventing further progress from
   being made or tasks from exiting,

 - the coredumping process may cause other processes to be oom killed
   without fault of their own as the result of a SIGSEGV, for example, in
   the coredumping process, or

 - the coredumping process may result in a livelock while writing to the
   dump file if it needs memory to allocate while other threads are in
   the exit path waiting on the coredumper to complete.

This is fixed by implying __GFP_NORETRY in the page allocator for
coredumping processes when reclaim has failed so the allocations fail and
the process continues to exit.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-28 17:14:35 -07:00
Kautuk Consul
b224ef856b page_alloc: remove unused find_zone_movable_pfns_for_nodes() argument
find_zone_movable_pfns_for_nodes() does not use its argument.

Signed-off-by: Kautuk Consul <consul.kautuk@gmail.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:55:00 -07:00
Kautuk Consul
8d13bddd11 page_alloc.c: remove add_from_early_node_map()
add_from_early_node_map() is unused.

Signed-off-by: Kautuk Consul <consul.kautuk@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:55:00 -07:00
Mel Gorman
cc9a6c8776 cpuset: mm: reduce large amounts of memory barrier related damage v3
Commit c0ff7453bb ("cpuset,mm: fix no node to alloc memory when
changing cpuset's mems") wins a super prize for the largest number of
memory barriers entered into fast paths for one commit.

[get|put]_mems_allowed is incredibly heavy with pairs of full memory
barriers inserted into a number of hot paths.  This was detected while
investigating at large page allocator slowdown introduced some time
after 2.6.32.  The largest portion of this overhead was shown by
oprofile to be at an mfence introduced by this commit into the page
allocator hot path.

For extra style points, the commit introduced the use of yield() in an
implementation of what looks like a spinning mutex.

This patch replaces the full memory barriers on both read and write
sides with a sequence counter with just read barriers on the fast path
side.  This is much cheaper on some architectures, including x86.  The
main bulk of the patch is the retry logic if the nodemask changes in a
manner that can cause a false failure.

While updating the nodemask, a check is made to see if a false failure
is a risk.  If it is, the sequence number gets bumped and parallel
allocators will briefly stall while the nodemask update takes place.

In a page fault test microbenchmark, oprofile samples from
__alloc_pages_nodemask went from 4.53% of all samples to 1.15%.  The
actual results were

                             3.3.0-rc3          3.3.0-rc3
                             rc3-vanilla        nobarrier-v2r1
    Clients   1 UserTime       0.07 (  0.00%)   0.08 (-14.19%)
    Clients   2 UserTime       0.07 (  0.00%)   0.07 (  2.72%)
    Clients   4 UserTime       0.08 (  0.00%)   0.07 (  3.29%)
    Clients   1 SysTime        0.70 (  0.00%)   0.65 (  6.65%)
    Clients   2 SysTime        0.85 (  0.00%)   0.82 (  3.65%)
    Clients   4 SysTime        1.41 (  0.00%)   1.41 (  0.32%)
    Clients   1 WallTime       0.77 (  0.00%)   0.74 (  4.19%)
    Clients   2 WallTime       0.47 (  0.00%)   0.45 (  3.73%)
    Clients   4 WallTime       0.38 (  0.00%)   0.37 (  1.58%)
    Clients   1 Flt/sec/cpu  497620.28 (  0.00%) 520294.53 (  4.56%)
    Clients   2 Flt/sec/cpu  414639.05 (  0.00%) 429882.01 (  3.68%)
    Clients   4 Flt/sec/cpu  257959.16 (  0.00%) 258761.48 (  0.31%)
    Clients   1 Flt/sec      495161.39 (  0.00%) 517292.87 (  4.47%)
    Clients   2 Flt/sec      820325.95 (  0.00%) 850289.77 (  3.65%)
    Clients   4 Flt/sec      1020068.93 (  0.00%) 1022674.06 (  0.26%)
    MMTests Statistics: duration
    Sys Time Running Test (seconds)             135.68    132.17
    User+Sys Time Running Test (seconds)         164.2    160.13
    Total Elapsed Time (seconds)                123.46    120.87

The overall improvement is small but the System CPU time is much
improved and roughly in correlation to what oprofile reported (these
performance figures are without profiling so skew is expected).  The
actual number of page faults is noticeably improved.

For benchmarks like kernel builds, the overall benefit is marginal but
the system CPU time is slightly reduced.

To test the actual bug the commit fixed I opened two terminals.  The
first ran within a cpuset and continually ran a small program that
faulted 100M of anonymous data.  In a second window, the nodemask of the
cpuset was continually randomised in a loop.

Without the commit, the program would fail every so often (usually
within 10 seconds) and obviously with the commit everything worked fine.
With this patch applied, it also worked fine so the fix should be
functionally equivalent.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:59 -07:00
Konstantin Khlebnikov
f0cb3c76ae mm: drain percpu lru add/rotate page-vectors on cpu hot-unplug
This cpu hotplug hook was accidentally removed in commit 00a62ce91e
("mm: fix Committed_AS underflow on large NR_CPUS environment")

The visible effect of this accident: some pages are borrowed in per-cpu
page-vectors.  Truncate can deal with it, but these pages cannot be
reused while this cpu is offline.  So this is like a temporary memory
leak.

Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Eric B Munson <ebmunson@us.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:58 -07:00
David Rientjes
08ab9b10d4 mm, oom: force oom kill on sysrq+f
The oom killer chooses not to kill a thread if:

 - an eligible thread has already been oom killed and has yet to exit,
   and

 - an eligible thread is exiting but has yet to free all its memory and
   is not the thread attempting to currently allocate memory.

SysRq+F manually invokes the global oom killer to kill a memory-hogging
task.  This is normally done as a last resort to free memory when no
progress is being made or to test the oom killer itself.

For both uses, we always want to kill a thread and never defer.  This
patch causes SysRq+F to always kill an eligible thread and can be used to
force a kill even if another oom killed thread has failed to exit.

Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:58 -07:00
Rik van Riel
aff622495c vmscan: only defer compaction for failed order and higher
Currently a failed order-9 (transparent hugepage) compaction can lead to
memory compaction being temporarily disabled for a memory zone.  Even if
we only need compaction for an order 2 allocation, eg.  for jumbo frames
networking.

The fix is relatively straightforward: keep track of the highest order at
which compaction is succeeding, and only defer compaction for orders at
which compaction is failing.

Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:56 -07:00
Dimitri Sivanich
074b85175a vfs: fix panic in __d_lookup() with high dentry hashtable counts
When the number of dentry cache hash table entries gets too high
(2147483648 entries), as happens by default on a 16TB system, use of a
signed integer in the dcache_init() initialization loop prevents the
dentry_hashtable from getting initialized, causing a panic in
__d_lookup().  Fix this in dcache_init() and similar areas.

Signed-off-by: Dimitri Sivanich <sivanich@sgi.com>
Acked-by: David S. Miller <davem@davemloft.net>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2012-02-13 20:45:38 -05:00
Michal Hocko
656a070629 mm: __count_immobile_pages(): make sure the node is online
page_zone() requires an online node otherwise we are accessing NULL
NODE_DATA.  This is not an issue at the moment because node_zones are
located at the structure beginning but this might change in the future
so better be careful about that.

Signed-off-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-23 08:38:47 -08:00
Michal Hocko
687875fb7d mm: fix NULL ptr dereference in __count_immobile_pages
Fix the following NULL ptr dereference caused by

  cat /sys/devices/system/memory/memory0/removable

Pid: 13979, comm: sed Not tainted 3.0.13-0.5-default #1 IBM BladeCenter LS21 -[7971PAM]-/Server Blade
RIP: __count_immobile_pages+0x4/0x100
Process sed (pid: 13979, threadinfo ffff880221c36000, task ffff88022e788480)
Call Trace:
  is_pageblock_removable_nolock+0x34/0x40
  is_mem_section_removable+0x74/0xf0
  show_mem_removable+0x41/0x70
  sysfs_read_file+0xfe/0x1c0
  vfs_read+0xc7/0x130
  sys_read+0x53/0xa0
  system_call_fastpath+0x16/0x1b

We are crashing because we are trying to dereference NULL zone which
came from pfn=0 (struct page ffffea0000000000). According to the boot
log this page is marked reserved:
e820 update range: 0000000000000000 - 0000000000010000 (usable) ==> (reserved)

and early_node_map confirms that:
early_node_map[3] active PFN ranges
    1: 0x00000010 -> 0x0000009c
    1: 0x00000100 -> 0x000bffa3
    1: 0x00100000 -> 0x00240000

The problem is that memory_present works in PAGE_SECTION_MASK aligned
blocks so the reserved range sneaks into the the section as well.  This
also means that free_area_init_node will not take care of those reserved
pages and they stay uninitialized.

When we try to read the removable status we walk through all available
sections and hope that the zone is valid for all pages in the section.
But this is not true in this case as the zone and nid are not initialized.

We have only one node in this particular case and it is marked as node=1
(rather than 0) and that made the problem visible because page_to_nid will
return 0 and there are no zones on the node.

Let's check that the zone is valid and that the given pfn falls into its
boundaries and mark the section not removable.  This might cause some
false positives, probably, but we do not have any sane way to find out
whether the page is reserved by the platform or it is just not used for
whatever other reasons.

Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-23 08:38:47 -08:00
Hugh Dickins
4111304dab mm: enum lru_list lru
Mostly we use "enum lru_list lru": change those few "l"s to "lru"s.

Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:10 -08:00
Mel Gorman
66199712e9 mm: page allocator: do not call direct reclaim for THP allocations while compaction is deferred
If compaction is deferred, direct reclaim is used to try to free enough
pages for the allocation to succeed.  For small high-orders, this has a
reasonable chance of success.  However, if the caller has specified
__GFP_NO_KSWAPD to limit the disruption to the system, it makes more sense
to fail the allocation rather than stall the caller in direct reclaim.
This patch skips direct reclaim if compaction is deferred and the caller
specifies __GFP_NO_KSWAPD.

Async compaction only considers a subset of pages so it is possible for
compaction to be deferred prematurely and not enter direct reclaim even in
cases where it should.  To compensate for this, this patch also defers
compaction only if sync compaction failed.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Rik van Riel<riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andy Isaacson <adi@hexapodia.org>
Cc: Nai Xia <nai.xia@gmail.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:09 -08:00
Bob Liu
d0048b0e59 page_alloc: break early in check_for_regular_memory()
If there is a zone below ZONE_NORMAL has present_pages, we can set node
state to N_NORMAL_MEMORY, no need to loop to end.

Signed-off-by: Bob Liu <lliubbo@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:07 -08:00
Johannes Weiner
6290df5458 mm: collect LRU list heads into struct lruvec
Having a unified structure with a LRU list set for both global zones and
per-memcg zones allows to keep that code simple which deals with LRU
lists and does not care about the container itself.

Once the per-memcg LRU lists directly link struct pages, the isolation
function and all other list manipulations are shared between the memcg
case and the global LRU case.

Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:05 -08:00
Johannes Weiner
c3993076f8 mm: page_alloc: generalize order handling in __free_pages_bootmem()
__free_pages_bootmem() used to special-case higher-order frees to save
individual page checking with free_pages_bulk().

Nowadays, both zero order and non-zero order frees use free_pages(), which
checks each individual page anyway, and so there is little point in making
the distinction anymore.  The higher-order loop will work just fine for
zero order pages.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 16:30:44 -08:00
Michal Hocko
df0a6daa01 mm: fix off-by-two in __zone_watermark_ok()
Commit 88f5acf88a ("mm: page allocator: adjust the per-cpu counter
threshold when memory is low") changed the form how free_pages is
calculated but it forgot that we used to do free_pages - ((1 << order) -
1) so we ended up with off-by-two when calculating free_pages.

Reported-by: Wang Sheng-Hui <shhuiw@gmail.com>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 16:30:44 -08:00
Johannes Weiner
a756cf5908 mm: try to distribute dirty pages fairly across zones
The maximum number of dirty pages that exist in the system at any time is
determined by a number of pages considered dirtyable and a user-configured
percentage of those, or an absolute number in bytes.

This number of dirtyable pages is the sum of memory provided by all the
zones in the system minus their lowmem reserves and high watermarks, so
that the system can retain a healthy number of free pages without having
to reclaim dirty pages.

But there is a flaw in that we have a zoned page allocator which does not
care about the global state but rather the state of individual memory
zones.  And right now there is nothing that prevents one zone from filling
up with dirty pages while other zones are spared, which frequently leads
to situations where kswapd, in order to restore the watermark of free
pages, does indeed have to write pages from that zone's LRU list.  This
can interfere so badly with IO from the flusher threads that major
filesystems (btrfs, xfs, ext4) mostly ignore write requests from reclaim
already, taking away the VM's only possibility to keep such a zone
balanced, aside from hoping the flushers will soon clean pages from that
zone.

Enter per-zone dirty limits.  They are to a zone's dirtyable memory what
the global limit is to the global amount of dirtyable memory, and try to
make sure that no single zone receives more than its fair share of the
globally allowed dirty pages in the first place.  As the number of pages
considered dirtyable excludes the zones' lowmem reserves and high
watermarks, the maximum number of dirty pages in a zone is such that the
zone can always be balanced without requiring page cleaning.

As this is a placement decision in the page allocator and pages are
dirtied only after the allocation, this patch allows allocators to pass
__GFP_WRITE when they know in advance that the page will be written to and
become dirty soon.  The page allocator will then attempt to allocate from
the first zone of the zonelist - which on NUMA is determined by the task's
NUMA memory policy - that has not exceeded its dirty limit.

At first glance, it would appear that the diversion to lower zones can
increase pressure on them, but this is not the case.  With a full high
zone, allocations will be diverted to lower zones eventually, so it is
more of a shift in timing of the lower zone allocations.  Workloads that
previously could fit their dirty pages completely in the higher zone may
be forced to allocate from lower zones, but the amount of pages that
"spill over" are limited themselves by the lower zones' dirty constraints,
and thus unlikely to become a problem.

For now, the problem of unfair dirty page distribution remains for NUMA
configurations where the zones allowed for allocation are in sum not big
enough to trigger the global dirty limits, wake up the flusher threads and
remedy the situation.  Because of this, an allocation that could not
succeed on any of the considered zones is allowed to ignore the dirty
limits before going into direct reclaim or even failing the allocation,
until a future patch changes the global dirty throttling and flusher
thread activation so that they take individual zone states into account.

			Test results

15M DMA + 3246M DMA32 + 504 Normal = 3765M memory
40% dirty ratio
16G USB thumb drive
10 runs of dd if=/dev/zero of=disk/zeroes bs=32k count=$((10 << 15))

		seconds			nr_vmscan_write
		        (stddev)	       min|     median|        max
xfs
vanilla:	 549.747( 3.492)	     0.000|      0.000|      0.000
patched:	 550.996( 3.802)	     0.000|      0.000|      0.000

fuse-ntfs
vanilla:	1183.094(53.178)	 54349.000|  59341.000|  65163.000
patched:	 558.049(17.914)	     0.000|      0.000|     43.000

btrfs
vanilla:	 573.679(14.015)	156657.000| 460178.000| 606926.000
patched:	 563.365(11.368)	     0.000|      0.000|   1362.000

ext4
vanilla:	 561.197(15.782)	     0.000|2725438.000|4143837.000
patched:	 568.806(17.496)	     0.000|      0.000|      0.000

Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 16:30:43 -08:00
Johannes Weiner
ab8fabd46f mm: exclude reserved pages from dirtyable memory
Per-zone dirty limits try to distribute page cache pages allocated for
writing across zones in proportion to the individual zone sizes, to reduce
the likelihood of reclaim having to write back individual pages from the
LRU lists in order to make progress.

This patch:

The amount of dirtyable pages should not include the full number of free
pages: there is a number of reserved pages that the page allocator and
kswapd always try to keep free.

The closer (reclaimable pages - dirty pages) is to the number of reserved
pages, the more likely it becomes for reclaim to run into dirty pages:

       +----------+ ---
       |   anon   |  |
       +----------+  |
       |          |  |
       |          |  -- dirty limit new    -- flusher new
       |   file   |  |                     |
       |          |  |                     |
       |          |  -- dirty limit old    -- flusher old
       |          |                        |
       +----------+                       --- reclaim
       | reserved |
       +----------+
       |  kernel  |
       +----------+

This patch introduces a per-zone dirty reserve that takes both the lowmem
reserve as well as the high watermark of the zone into account, and a
global sum of those per-zone values that is subtracted from the global
amount of dirtyable pages.  The lowmem reserve is unavailable to page
cache allocations and kswapd tries to keep the high watermark free.  We
don't want to end up in a situation where reclaim has to clean pages in
order to balance zones.

Not treating reserved pages as dirtyable on a global level is only a
conceptual fix.  In reality, dirty pages are not distributed equally
across zones and reclaim runs into dirty pages on a regular basis.

But it is important to get this right before tackling the problem on a
per-zone level, where the distance between reclaim and the dirty pages is
mostly much smaller in absolute numbers.

[akpm@linux-foundation.org: fix highmem build]
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 16:30:43 -08:00
Stanislaw Gruszka
c0a32fc5a2 mm: more intensive memory corruption debugging
With CONFIG_DEBUG_PAGEALLOC configured, the CPU will generate an exception
on access (read,write) to an unallocated page, which permits us to catch
code which corrupts memory.  However the kernel is trying to maximise
memory usage, hence there are usually few free pages in the system and
buggy code usually corrupts some crucial data.

This patch changes the buddy allocator to keep more free/protected pages
and to interlace free/protected and allocated pages to increase the
probability of catching corruption.

When the kernel is compiled with CONFIG_DEBUG_PAGEALLOC,
debug_guardpage_minorder defines the minimum order used by the page
allocator to grant a request.  The requested size will be returned with
the remaining pages used as guard pages.

The default value of debug_guardpage_minorder is zero: no change from
current behaviour.

[akpm@linux-foundation.org: tweak documentation, s/flg/flag/]
Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 16:30:42 -08:00
Mel Gorman
f90ac3982a mm: avoid livelock on !__GFP_FS allocations
Colin Cross reported;

  Under the following conditions, __alloc_pages_slowpath can loop forever:
  gfp_mask & __GFP_WAIT is true
  gfp_mask & __GFP_FS is false
  reclaim and compaction make no progress
  order <= PAGE_ALLOC_COSTLY_ORDER

  These conditions happen very often during suspend and resume,
  when pm_restrict_gfp_mask() effectively converts all GFP_KERNEL
  allocations into __GFP_WAIT.

  The oom killer is not run because gfp_mask & __GFP_FS is false,
  but should_alloc_retry will always return true when order is less
  than PAGE_ALLOC_COSTLY_ORDER.

In his fix, he avoided retrying the allocation if reclaim made no progress
and __GFP_FS was not set.  The problem is that this would result in
GFP_NOIO allocations failing that previously succeeded which would be very
unfortunate.

The big difference between GFP_NOIO and suspend converting GFP_KERNEL to
behave like GFP_NOIO is that normally flushers will be cleaning pages and
kswapd reclaims pages allowing GFP_NOIO to succeed after a short delay.
The same does not necessarily apply during suspend as the storage device
may be suspended.

This patch special cases the suspend case to fail the page allocation if
reclaim cannot make progress and adds some documentation on how
gfp_allowed_mask is currently used.  Failing allocations like this may
cause suspend to abort but that is better than a livelock.

[mgorman@suse.de: Rework fix to be suspend specific]
[rientjes@google.com: Move suspended device check to should_alloc_retry]
Reported-by: Colin Cross <ccross@android.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 16:30:42 -08:00
Mel Gorman
938929f14c mm: reduce the amount of work done when updating min_free_kbytes
When min_free_kbytes is updated, some pageblocks are marked
MIGRATE_RESERVE.  Ordinarily, this work is unnoticable as it happens early
in boot but on large machines with 1TB of memory, this has been reported
to delay boot times, probably due to the NUMA distances involved.

The bulk of the work is due to calling calling pageblock_is_reserved() an
unnecessary amount of times and accessing far more struct page metadata
than is necessary.  This patch significantly reduces the amount of work
done by setup_zone_migrate_reserve() improving boot times on 1TB machines.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 16:30:42 -08:00
Konstantin Khlebnikov
b413d48aa7 mm-tracepoint: rename page-free events
Rename mm_page_free_direct into mm_page_free and mm_pagevec_free into
mm_page_free_batched

Since v2.6.33-5426-gc475dab the kernel triggers mm_page_free_direct for
all freed pages, not only for directly freed.  So, let's name it properly.
 For pages freed via page-list we also trigger mm_page_free_batched event.

Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 16:30:41 -08:00
Konstantin Khlebnikov
da066ad357 mm: remove unused pagevec_free
It not exported and now nobody uses it.

Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 16:30:41 -08:00
Konstantin Khlebnikov
cc59850ef9 mm: add free_hot_cold_page_list() helper
This patch adds helper free_hot_cold_page_list() to free list of 0-order
pages.  It frees pages directly from list without temporary page-vector.
It also calls trace_mm_pagevec_free() to simulate pagevec_free()
behaviour.

bloat-o-meter:

add/remove: 1/1 grow/shrink: 1/3 up/down: 267/-295 (-28)
function                                     old     new   delta
free_hot_cold_page_list                        -     264    +264
get_page_from_freelist                      2129    2132      +3
__pagevec_free                               243     239      -4
split_free_page                              380     373      -7
release_pages                                606     510     -96
free_page_list                               188       -    -188

Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 16:30:41 -08:00