Both sparc 32-bit's software divide assembler and MPILIB provide
clz_tab[] with identical contents.
Break it out into a seperate object file and select it when
SPARC32 or MPILIB is set.
Reported-by: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: James Morris <jmorris@namei.org>
It was reported that DIGSIG is confusing name for digital signature
module. It was suggested to rename DIGSIG to SIGNATURE.
Requested-by: Linus Torvalds <torvalds@linux-foundation.org>
Suggested-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Dmitry Kasatkin <dmitry.kasatkin@intel.com>
Signed-off-by: James Morris <jmorris@namei.org>
* 'for-linus' of git://selinuxproject.org/~jmorris/linux-security: (32 commits)
ima: fix invalid memory reference
ima: free duplicate measurement memory
security: update security_file_mmap() docs
selinux: Casting (void *) value returned by kmalloc is useless
apparmor: fix module parameter handling
Security: tomoyo: add .gitignore file
tomoyo: add missing rcu_dereference()
apparmor: add missing rcu_dereference()
evm: prevent racing during tfm allocation
evm: key must be set once during initialization
mpi/mpi-mpow: NULL dereference on allocation failure
digsig: build dependency fix
KEYS: Give key types their own lockdep class for key->sem
TPM: fix transmit_cmd error logic
TPM: NSC and TIS drivers X86 dependency fix
TPM: Export wait_for_stat for other vendor specific drivers
TPM: Use vendor specific function for status probe
tpm_tis: add delay after aborting command
tpm_tis: Check return code from getting timeouts/durations
tpm: Introduce function to poll for result of self test
...
Fix up trivial conflict in lib/Makefile due to addition of CONFIG_MPI
and SIGSIG next to CONFIG_DQL addition.
lib: use generic pci_iomap on all architectures
Many architectures don't want to pull in iomap.c,
so they ended up duplicating pci_iomap from that file.
That function isn't trivial, and we are going to modify it
https://lkml.org/lkml/2011/11/14/183
so the duplication hurts.
This reduces the scope of the problem significantly,
by moving pci_iomap to a separate file and
referencing that from all architectures.
* tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost:
alpha: drop pci_iomap/pci_iounmap from pci-noop.c
mn10300: switch to GENERIC_PCI_IOMAP
mn10300: add missing __iomap markers
frv: switch to GENERIC_PCI_IOMAP
tile: switch to GENERIC_PCI_IOMAP
tile: don't panic on iomap
sparc: switch to GENERIC_PCI_IOMAP
sh: switch to GENERIC_PCI_IOMAP
powerpc: switch to GENERIC_PCI_IOMAP
parisc: switch to GENERIC_PCI_IOMAP
mips: switch to GENERIC_PCI_IOMAP
microblaze: switch to GENERIC_PCI_IOMAP
arm: switch to GENERIC_PCI_IOMAP
alpha: switch to GENERIC_PCI_IOMAP
lib: add GENERIC_PCI_IOMAP
lib: move GENERIC_IOMAP to lib/Kconfig
Fix up trivial conflicts due to changes nearby in arch/{m68k,score}/Kconfig
* 'driver-core-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (73 commits)
arm: fix up some samsung merge sysdev conversion problems
firmware: Fix an oops on reading fw_priv->fw in sysfs loading file
Drivers:hv: Fix a bug in vmbus_driver_unregister()
driver core: remove __must_check from device_create_file
debugfs: add missing #ifdef HAS_IOMEM
arm: time.h: remove device.h #include
driver-core: remove sysdev.h usage.
clockevents: remove sysdev.h
arm: convert sysdev_class to a regular subsystem
arm: leds: convert sysdev_class to a regular subsystem
kobject: remove kset_find_obj_hinted()
m86k: gpio - convert sysdev_class to a regular subsystem
mips: txx9_sram - convert sysdev_class to a regular subsystem
mips: 7segled - convert sysdev_class to a regular subsystem
sh: dma - convert sysdev_class to a regular subsystem
sh: intc - convert sysdev_class to a regular subsystem
power: suspend - convert sysdev_class to a regular subsystem
power: qe_ic - convert sysdev_class to a regular subsystem
power: cmm - convert sysdev_class to a regular subsystem
s390: time - convert sysdev_class to a regular subsystem
...
Fix up conflicts with 'struct sysdev' removal from various platform
drivers that got changed:
- arch/arm/mach-exynos/cpu.c
- arch/arm/mach-exynos/irq-eint.c
- arch/arm/mach-s3c64xx/common.c
- arch/arm/mach-s3c64xx/cpu.c
- arch/arm/mach-s5p64x0/cpu.c
- arch/arm/mach-s5pv210/common.c
- arch/arm/plat-samsung/include/plat/cpu.h
- arch/powerpc/kernel/sysfs.c
and fix up cpu_is_hotpluggable() as per Greg in include/linux/cpu.h
Implementation of dynamic queue limits (dql). This is a libary which
allows a queue limit to be dynamically managed. The goal of dql is
to set the queue limit, number of objects to the queue, to be minimized
without allowing the queue to be starved.
dql would be used with a queue which has these properties:
1) Objects are queued up to some limit which can be expressed as a
count of objects.
2) Periodically a completion process executes which retires consumed
objects.
3) Starvation occurs when limit has been reached, all queued data has
actually been consumed but completion processing has not yet run,
so queuing new data is blocked.
4) Minimizing the amount of queued data is desirable.
A canonical example of such a queue would be a NIC HW transmit queue.
The queue limit is dynamic, it will increase or decrease over time
depending on the workload. The queue limit is recalculated each time
completion processing is done. Increases occur when the queue is
starved and can exponentially increase over successive intervals.
Decreases occur when more data is being maintained in the queue than
needed to prevent starvation. The number of extra objects, or "slack",
is measured over successive intervals, and to avoid hysteresis the
limit is only reduced by the miminum slack seen over a configurable
time period.
dql API provides routines to manage the queue:
- dql_init is called to intialize the dql structure
- dql_reset is called to reset dynamic values
- dql_queued called when objects are being enqueued
- dql_avail returns availability in the queue
- dql_completed is called when objects have be consumed in the queue
Configuration consists of:
- max_limit, maximum limit
- min_limit, minimum limit
- slack_hold_time, time to measure instances of slack before reducing
queue limit
Signed-off-by: Tom Herbert <therbert@google.com>
Acked-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Many architectures want a generic pci_iomap but
not the rest of iomap.c. Split that to a separate .c
file and add a new config symbol. select automatically
by GENERIC_IOMAP.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
This patch implements RSA digital signature verification using GnuPG library.
The format of the signature and the public key is defined by their respective
headers. The signature header contains version information, algorithm,
and keyid, which was used to generate the signature.
The key header contains version and algorythim type.
The payload of the signature and the key are multi-precision integers.
The signing and key management utilities evm-utils provide functionality
to generate signatures and load keys into the kernel keyring.
When the key is added to the kernel keyring, the keyid defines the name
of the key.
Signed-off-by: Dmitry Kasatkin <dmitry.kasatkin@intel.com>
Acked-by: Mimi Zohar <zohar@us.ibm.com>
Adds the multi-precision-integer maths library which was originally taken
from GnuPG and ported to the kernel by (among others) David Howells.
This version is taken from Fedora kernel 2.6.32-71.14.1.el6.
The difference is that checkpatch reported errors and warnings have been fixed.
This library is used to implemenet RSA digital signature verification
used in IMA/EVM integrity protection subsystem.
Due to patch size limitation, the patch is divided into 4 parts.
Signed-off-by: Dmitry Kasatkin <dmitry.kasatkin@intel.com>
If there are no builtin users of find_next_bit_le() and
find_next_zero_bit_le(), these functions are not present in the kernel
image, causing m68k allmodconfig to fail with:
ERROR: "find_next_zero_bit_le" [fs/ufs/ufs.ko] undefined!
ERROR: "find_next_bit_le" [fs/udf/udf.ko] undefined!
...
This started to happen after commit 171d809df1 ("m68k: merge mmu and
non-mmu bitops.h"), as m68k had its own inline versions before.
commit 63e424c844 ("arch: remove CONFIG_GENERIC_FIND_{NEXT_BIT,
BIT_LE, LAST_BIT}") added find_last_bit.o to obj-y (so it's always
included), but find_next_bit.o to lib-y (so it gets removed by the
linker if there are no builtin users).
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Greg Ungerer <gerg@uclinux.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some trivial conflicts due to other various merges
adding to the end of common lists sooner than this one.
arch/ia64/Kconfig
arch/powerpc/Kconfig
arch/x86/Kconfig
lib/Kconfig
lib/Makefile
Signed-off-by: Len Brown <len.brown@intel.com>
Cmpxchg is used to implement adding new entry to the list, deleting
all entries from the list, deleting first entry of the list and some
other operations.
Because this is a single list, so the tail can not be accessed in O(1).
If there are multiple producers and multiple consumers, llist_add can
be used in producers and llist_del_all can be used in consumers. They
can work simultaneously without lock. But llist_del_first can not be
used here. Because llist_del_first depends on list->first->next does
not changed if list->first is not changed during its operation, but
llist_del_first, llist_add, llist_add (or llist_del_all, llist_add,
llist_add) sequence in another consumer may violate that.
If there are multiple producers and one consumer, llist_add can be
used in producers and llist_del_all or llist_del_first can be used in
the consumer.
This can be summarized as follow:
| add | del_first | del_all
add | - | - | -
del_first | | L | L
del_all | | | -
Where "-" stands for no lock is needed, while "L" stands for lock is
needed.
The list entries deleted via llist_del_all can be traversed with
traversing function such as llist_for_each etc. But the list entries
can not be traversed safely before deleted from the list. The order
of deleted entries is from the newest to the oldest added one. If you
want to traverse from the oldest to the newest, you must reverse the
order by yourself before traversing.
The basic atomic operation of this list is cmpxchg on long. On
architectures that don't have NMI-safe cmpxchg implementation, the
list can NOT be used in NMI handler. So code uses the list in NMI
handler should depend on CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Len Brown <len.brown@intel.com>
There a large number hand-coded binary searches in the kernel (run
"git grep search | grep binary" to find many of them). Since in my
experience, hand-coding binary searches can be error-prone, it seems
worth cleaning this up by providing a generic binary search function.
This generic binary search implementation comes from Ksplice. It has
the same basic API as the C library bsearch() function. Ksplice uses
it in half a dozen places with 4 different comparison functions, and I
think our code is substantially cleaner because of this.
Signed-off-by: Tim Abbott <tabbott@ksplice.com>
Extra-bikeshedding-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk>
Extra-bikeshedding-by: André Goddard Rosa <andre.goddard@gmail.com>
Extra-bikeshedding-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Alessio Igor Bogani <abogani@kernel.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
* 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6: (9356 commits)
[media] rc: update for bitop name changes
fs: simplify iget & friends
fs: pull inode->i_lock up out of writeback_single_inode
fs: rename inode_lock to inode_hash_lock
fs: move i_wb_list out from under inode_lock
fs: move i_sb_list out from under inode_lock
fs: remove inode_lock from iput_final and prune_icache
fs: Lock the inode LRU list separately
fs: factor inode disposal
fs: protect inode->i_state with inode->i_lock
lib, arch: add filter argument to show_mem and fix private implementations
SLUB: Write to per cpu data when allocating it
slub: Fix debugobjects with lockless fastpath
autofs4: Do not potentially dereference NULL pointer returned by fget() in autofs_dev_ioctl_setpipefd()
autofs4 - remove autofs4_lock
autofs4 - fix d_manage() return on rcu-walk
autofs4 - fix autofs4_expire_indirect() traversal
autofs4 - fix dentry leak in autofs4_expire_direct()
autofs4 - reinstate last used update on access
vfs - check non-mountpoint dentry might block in __follow_mount_rcu()
...
NOTE!
This merge commit was created to fix compilation error. The block
tree was merged upstream and removed the 'elv_queue_empty()'
function which the new 'mtdswap' driver is using. So a simple
merge of the mtd tree with upstream does not compile. And the
mtd tree has already be published, so re-basing it is not an option.
To fix this unfortunate situation, I had to merge upstream into the
mtd-2.6.git tree without committing, put the fixup patch on top of
this, and then commit this. The result is that we do not have commits
which do not compile.
In other words, this merge commit "merges" 3 things: the MTD tree, the
upstream tree, and the fixup patch.
This introduces CONFIG_GENERIC_FIND_BIT_LE to tell whether to use generic
implementation of find_*_bit_le() in lib/find_next_bit.c or not.
For now we select CONFIG_GENERIC_FIND_BIT_LE for all architectures which
enable CONFIG_GENERIC_FIND_NEXT_BIT.
But m68knommu wants to define own faster find_next_zero_bit_le() and
continues using generic find_next_{,zero_}bit().
(CONFIG_GENERIC_FIND_NEXT_BIT and !CONFIG_GENERIC_FIND_BIT_LE)
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Greg Ungerer <gerg@uclinux.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1. simple_strto*() do not contain overflow checks and crufty,
libc way to indicate failure.
2. strict_strto*() also do not have overflow checks but the name and
comments pretend they do.
3. Both families have only "long long" and "long" variants,
but users want strtou8()
4. Both "simple" and "strict" prefixes are wrong:
Simple doesn't exactly say what's so simple, strict should not exist
because conversion should be strict by default.
The solution is to use "k" prefix and add convertors for more types.
Enter
kstrtoull()
kstrtoll()
kstrtoul()
kstrtol()
kstrtouint()
kstrtoint()
kstrtou64()
kstrtos64()
kstrtou32()
kstrtos32()
kstrtou16()
kstrtos16()
kstrtou8()
kstrtos8()
Include runtime testsuite (somewhat incomplete) as well.
strict_strto*() become deprecated, stubbed to kstrto*() and
eventually will be removed altogether.
Use kstrto*() in code today!
Note: on some archs _kstrtoul() and _kstrtol() are left in tree, even if
they'll be unused at runtime. This is temporarily solution,
because I don't want to hardcode list of archs where these
functions aren't needed. Current solution with sizeof() and
__alignof__ at least always works.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'config' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/bkl:
BKL: That's all, folks
fs/locks.c: Remove stale FIXME left over from BKL conversion
ipx: remove the BKL
appletalk: remove the BKL
x25: remove the BKL
ufs: remove the BKL
hpfs: remove the BKL
drivers: remove extraneous includes of smp_lock.h
tracing: don't trace the BKL
adfs: remove the big kernel lock
This is a new software BCH encoding/decoding library, similar to the shared
Reed-Solomon library.
Binary BCH (Bose-Chaudhuri-Hocquenghem) codes are widely used to correct
errors in NAND flash devices requiring more than 1-bit ecc correction; they
are generally better suited for NAND flash than RS codes because NAND bit
errors do not occur in bursts. Latest SLC NAND devices typically require at
least 4-bit ecc protection per 512 bytes block.
This library provides software encoding/decoding, but may also be used with
ASIC/SoC hardware BCH engines to perform error correction. It is being
currently used for this purpose on an OMAP3630 board (4bit/8bit HW BCH). It
has also been used to decode raw dumps of NAND devices with on-die BCH ecc
engines (e.g. Micron 4bit ecc SLC devices).
Latest NAND devices (including SLC) can exhibit high error rates (typically
a dozen or more bitflips per hour during stress tests); in order to
minimize the performance impact of error correction, this library
implements recently developed algorithms for fast polynomial root finding
(see bch.c header for details) instead of the traditional exhaustive Chien
root search; a few performance figures are provided below:
Platform: arm926ejs @ 468 MHz, 32 KiB icache, 16 KiB dcache
BCH ecc : 4-bit per 512 bytes
Encoding average throughput: 250 Mbits/s
Error correction time (compared with Chien search):
average worst average (Chien) worst (Chien)
----------------------------------------------------------
1 bit 8.5 µs 11 µs 200 µs 383 µs
2 bit 9.7 µs 12.5 µs 477 µs 728 µs
3 bit 18.1 µs 20.6 µs 758 µs 1010 µs
4 bit 19.5 µs 23 µs 1028 µs 1280 µs
In the above figures, "worst" is meant in terms of error pattern, not in
terms of cache miss / page faults effects (not taken into account here).
The library has been extensively tested on the following platforms: x86,
x86_64, arm926ejs, omap3630, qemu-ppc64, qemu-mips.
Signed-off-by: Ivan Djelic <ivan.djelic@parrot.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>