This commit handles workloads that transition quickly between idle and
non-idle, and where the CPU's callbacks cannot be invoked, but where
RCU does not have anything immediate for the CPU to do. Without this
patch, the RCU_FAST_NO_HZ code can be invoked repeatedly on each entry
to idle. The commit sets the per-CPU rcu_dyntick_holdoff variable to
hold off further attempts for a tick.
Reported-by: "Abou Gazala, Neven M" <neven.m.abou.gazala@intel.com>
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
If a softirq is pending, the current CPU has RCU callbacks pending,
and RCU does not immediately need anything from this CPU, then the
current code resets the RCU_FAST_NO_HZ state machine. This means that
upon exit from the subsequent softirq handler, RCU_FAST_NO_HZ will
try really hard to force RCU into dyntick-idle mode. And if the same
conditions hold after a few tries (determined by RCU_IDLE_OPT_FLUSHES),
the same situation can repeat, possibly endlessly. This scenario is
not particularly good for battery lifetime.
This commit therefore suppresses the early exit from the RCU_FAST_NO_HZ
state machine in the case where there is a softirq pending. This change
forces the state machine to retain its memory, and to enter holdoff if
this condition persists.
Reported-by: "Abou Gazala, Neven M" <neven.m.abou.gazala@intel.com>
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The expedited RCU primitives can be quite useful, but they have some
high costs as well. This commit updates and creates docbook comments
calling out the costs, and updates the RCU documentation as well.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Because newly offlined CPUs continue executing after completing the
CPU_DYING notifiers, they legitimately enter the scheduler and use
RCU while appearing to be offline. This calls for a more sophisticated
approach as follows:
1. RCU marks the CPU online during the CPU_UP_PREPARE phase.
2. RCU marks the CPU offline during the CPU_DEAD phase.
3. Diagnostics regarding use of read-side RCU by offline CPUs use
RCU's accounting rather than the cpu_online_map. (Note that
__call_rcu() still uses cpu_online_map to detect illegal
invocations within CPU_DYING notifiers.)
4. Offline CPUs are prevented from hanging the system by
force_quiescent_state(), which pays attention to cpu_online_map.
Some additional work (in a later commit) will be needed to
guarantee that force_quiescent_state() waits a full jiffy before
assuming that a CPU is offline, for example, when called from
idle entry. (This commit also makes the one-jiffy wait
explicit, since the old-style implicit wait can now be defeated
by RCU_FAST_NO_HZ and by rcutorture.)
This approach avoids the false positives encountered when attempting to
use more exact classification of CPU online/offline state.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The rcu_prepare_for_idle() function is always called with interrupts
disabled, so there is no reason to disable interrupts again within
rcu_prepare_for_idle(). Therefore, this commit removes all of the
interrupt disabling, also removing a latent disabling-unbalance bug.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Now that TREE_RCU and TREE_PREEMPT_RCU no longer do anything different
for the single-CPU case, there is no need for multiple definitions of
synchronize_sched_expedited(). It is no longer in any sense a plug-in,
so move it from kernel/rcutree_plugin.h to kernel/rcutree.c.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Although it is legal to use RCU during early boot, it is anything
but legal to use RCU at runtime from an offlined CPU. After all, RCU
explicitly ignores offlined CPUs. This commit therefore adds checks
for runtime use of RCU from offlined CPUs.
These checks are not perfect, in particular, they can be subverted
through use of things like rcu_dereference_raw(). Note that it is not
possible to put checks in rcu_read_lock() and friends due to the fact
that these primitives are used in code that might be used under either
RCU or lock-based protection, which means that checking rcu_read_lock()
gets you fat piles of false positives.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
There have been situations where RCU CPU stall warnings were caused by
issues in scheduling-clock timer initialization. To make it easier to
track these down, this commit causes the RCU CPU stall-warning messages
to print out the number of scheduling-clock interrupts taken in the
current grace period for each stalled CPU.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Now that both TINY_RCU and TINY_PREEMPT_RCU have been in place for awhile,
it is time to remove UP support from TREE_RCU, which is what this commit
does.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The recent updates to RCU_CPU_FAST_NO_HZ have an rcu_needs_cpu() that
does more than just check for callbacks, so get the name for
rcu_preempt_needs_cpu() consistent with that change, now calling it
rcu_preempt_cpu_has_callbacks().
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, a given CPU is permitted to remain in dyntick-idle mode
indefinitely if it has only lazy RCU callbacks queued. This is vulnerable
to corner cases in NUMA systems, so limit the time to six seconds by
default. (Currently controlled by a cpp macro.)
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Move ->qsmaskinit and blkd_tasks[] manipulation to the CPU_DYING
notifier. This simplifies the code by eliminating a potential
deadlock and by reducing the responsibilities of force_quiescent_state().
Also rename functions to make their connection to the CPU-hotplug
stages explicit.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
When CONFIG_RCU_FAST_NO_HZ is enabled, RCU will allow a given CPU to
enter dyntick-idle mode even if it still has RCU callbacks queued.
RCU avoids system hangs in this case by scheduling a timer for several
jiffies in the future. However, if all of the callbacks on that CPU
are from kfree_rcu(), there is no reason to wake the CPU up, as it is
not a problem to defer freeing of memory.
This commit therefore tracks the number of callbacks on a given CPU
that are from kfree_rcu(), and avoids scheduling the timer if all of
a given CPU's callbacks are from kfree_rcu().
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
It is illegal to have a grace period within a same-flavor RCU read-side
critical section, so this commit adds lockdep-RCU checks to splat when
such abuse is encountered. This commit does not detect more elaborate
RCU deadlock situations. These situations might be a job for lockdep
enhancements.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Both TINY_RCU's and TREE_RCU's implementations of rcu_boost() access
the ->boost_tasks and ->exp_tasks fields without preventing concurrent
changes to these fields. This commit therefore applies ACCESS_ONCE in
order to prevent compiler mischief.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This reverts commit 5342e269b2.
The approach taken in this patch was deemed too abusive to mutexes,
and thus too likely to result in maintenance problems in the future.
Instead, we will disallow RCU read-side critical sections that partially
overlap with interrupt-disbled code segments.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
If there are other CPUs active at a given point in time, then there is a
limit to what a given CPU can do to advance the current RCU grace period.
Beyond this limit, attempting to force the RCU grace period forward will
do nothing but consume energy burning CPU cycles.
Therefore, this commit takes an adaptive approach to RCU_FAST_NO_HZ
preparations for idle. It pushes the RCU core state machine for
two cycles unconditionally, and then it will push from zero to three
additional cycles, but only as long as the RCU core has work for this
CPU to do immediately. The rcu_pending() function is used to check
whether the RCU core has such work.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The rcu_do_batch() function that invokes callbacks for TREE_RCU and
TREE_PREEMPT_RCU normally throttles callback invocation to avoid degrading
scheduling latency. However, as long as the CPU would otherwise be idle,
there is no downside to continuing to invoke any callbacks that have passed
through their grace periods. In fact, processing such callbacks in a
timely manner has the benefit of increasing the probability that the
CPU can enter the power-saving dyntick-idle mode.
Therefore, this commit allows callback invocation to continue beyond the
preset limit as long as the scheduler does not have some other task to
run and as long as context is that of the idle task or the relevant
RCU kthread.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The current implementation of RCU_FAST_NO_HZ prevents CPUs from entering
dyntick-idle state if they have RCU callbacks pending. Unfortunately,
this has the side-effect of often preventing them from entering this
state, especially if at least one other CPU is not in dyntick-idle state.
However, the resulting per-tick wakeup is wasteful in many cases: if the
CPU has already fully responded to the current RCU grace period, there
will be nothing for it to do until this grace period ends, which will
frequently take several jiffies.
This commit therefore permits a CPU that has done everything that the
current grace period has asked of it (rcu_pending() == 0) even if it
still as RCU callbacks pending. However, such a CPU posts a timer to
wake it up several jiffies later (6 jiffies, based on experience with
grace-period lengths). This wakeup is required to handle situations
that can result in all CPUs being in dyntick-idle mode, thus failing
to ever complete the current grace period. If a CPU wakes up before
the timer goes off, then it cancels that timer, thus avoiding spurious
wakeups.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Re-enable interrupts across calls to quiescent-state functions and
also across force_quiescent_state() to reduce latency.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
With the new implementation of RCU_FAST_NO_HZ, it was possible to hang
RCU grace periods as follows:
o CPU 0 attempts to go idle, cycles several times through the
rcu_prepare_for_idle() loop, then goes dyntick-idle when
RCU needs nothing more from it, while still having at least
on RCU callback pending.
o CPU 1 goes idle with no callbacks.
Both CPUs can then stay in dyntick-idle mode indefinitely, preventing
the RCU grace period from ever completing, possibly hanging the system.
This commit therefore prevents CPUs that have RCU callbacks from entering
dyntick-idle mode. This approach also eliminates the need for the
end-of-grace-period IPIs used previously.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
If a CPU enters dyntick-idle mode with callbacks pending, it will need
an IPI at the end of the grace period. However, if it exits dyntick-idle
mode before the grace period ends, it will be needlessly IPIed at the
end of the grace period.
Therefore, this commit clears the per-CPU rcu_awake_at_gp_end flag
when a CPU determines that it does not need it. This in turn requires
disabling interrupts across much of rcu_prepare_for_idle() in order to
avoid having nested interrupts clearing this state out from under us.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The earlier version would attempt to push callbacks through five times
before going into dyntick-idle mode if callbacks remained, but the CPU
had done all that it needed to do for the current RCU grace periods.
This is wasteful: In most cases, once the CPU has done all that it
needs to for the current RCU grace periods, it will make no further
progress on the callbacks no matter how many times it loops through
the RCU core processing and the idle-entry code.
This commit therefore goes to dyntick-idle mode whenever the current
CPU has done all it can for the current grace period.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit adds trace_rcu_prep_idle(), which is invoked from
rcu_prepare_for_idle() and rcu_wake_cpu() to trace attempts on
the part of RCU to force CPUs into dyntick-idle mode.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, RCU does not permit a CPU to enter dyntick-idle mode if that
CPU has any RCU callbacks queued. This means that workloads for which
each CPU wakes up and does some RCU updates every few ticks will never
enter dyntick-idle mode. This can result in significant unnecessary power
consumption, so this patch permits a given to enter dyntick-idle mode if
it has callbacks, but only if that same CPU has completed all current
work for the RCU core. We determine use rcu_pending() to determine
whether a given CPU has completed all current work for the RCU core.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>