commit 70c8217acd4383e069fe1898bbad36ea4fcdbdcc upstream.
If a task uses a non constant string for the format parameter in
trace_printk(), then the trace_printk_fmt variable is set to NULL. This
variable is then saved in the __trace_printk_fmt section.
The function hold_module_trace_bprintk_format() checks to see if duplicate
formats are used by modules, and reuses them if so (saves them to the list
if it is new). But this function calls lookup_format() that does a strcmp()
to the value (which is now NULL) and can cause a kernel oops.
This wasn't an issue till 3debb0a9ddb ("tracing: Fix trace_printk() to print
when not using bprintk()") which added "__used" to the trace_printk_fmt
variable, and before that, the kernel simply optimized it out (no NULL value
was saved).
The fix is simply to handle the NULL pointer in lookup_format() and have the
caller ignore the value if it was NULL.
Link: http://lkml.kernel.org/r/1464769870-18344-1-git-send-email-zhengjun.xing@intel.com
Reported-by: xingzhen <zhengjun.xing@intel.com>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Fixes: 3debb0a9ddb ("tracing: Fix trace_printk() to print when not using bprintk()")
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8974189222159154c55f24ddad33e3613960521a upstream.
As per commit:
b7fa30c9cc48 ("sched/fair: Fix post_init_entity_util_avg() serialization")
> the code generated from update_cfs_rq_load_avg():
>
> if (atomic_long_read(&cfs_rq->removed_load_avg)) {
> s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
> sa->load_avg = max_t(long, sa->load_avg - r, 0);
> sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
> removed_load = 1;
> }
>
> turns into:
>
> ffffffff81087064: 49 8b 85 98 00 00 00 mov 0x98(%r13),%rax
> ffffffff8108706b: 48 85 c0 test %rax,%rax
> ffffffff8108706e: 74 40 je ffffffff810870b0 <update_blocked_averages+0xc0>
> ffffffff81087070: 4c 89 f8 mov %r15,%rax
> ffffffff81087073: 49 87 85 98 00 00 00 xchg %rax,0x98(%r13)
> ffffffff8108707a: 49 29 45 70 sub %rax,0x70(%r13)
> ffffffff8108707e: 4c 89 f9 mov %r15,%rcx
> ffffffff81087081: bb 01 00 00 00 mov $0x1,%ebx
> ffffffff81087086: 49 83 7d 70 00 cmpq $0x0,0x70(%r13)
> ffffffff8108708b: 49 0f 49 4d 70 cmovns 0x70(%r13),%rcx
>
> Which you'll note ends up with sa->load_avg -= r in memory at
> ffffffff8108707a.
So I _should_ have looked at other unserialized users of ->load_avg,
but alas. Luckily nikbor reported a similar /0 from task_h_load() which
instantly triggered recollection of this here problem.
Aside from the intermediate value hitting memory and causing problems,
there's another problem: the underflow detection relies on the signed
bit. This reduces the effective width of the variables, IOW its
effectively the same as having these variables be of signed type.
This patch changes to a different means of unsigned underflow
detection to not rely on the signed bit. This allows the variables to
use the 'full' unsigned range. And it does so with explicit LOAD -
STORE to ensure any intermediate value will never be visible in
memory, allowing these unserialized loads.
Note: GCC generates crap code for this, might warrant a look later.
Note2: I say 'full' above, if we end up at U*_MAX we'll still explode;
maybe we should do clamping on add too.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yuyang Du <yuyang.du@intel.com>
Cc: bsegall@google.com
Cc: kernel@kyup.com
Cc: morten.rasmussen@arm.com
Cc: pjt@google.com
Cc: steve.muckle@linaro.org
Fixes: 9d89c257df ("sched/fair: Rewrite runnable load and utilization average tracking")
Link: http://lkml.kernel.org/r/20160617091948.GJ30927@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4c5ea0a9cd02d6aa8adc86e100b2a4cff8d614ff upstream.
The following scenario is possible:
CPU 1 CPU 2
static_key_slow_inc()
atomic_inc_not_zero()
-> key.enabled == 0, no increment
jump_label_lock()
atomic_inc_return()
-> key.enabled == 1 now
static_key_slow_inc()
atomic_inc_not_zero()
-> key.enabled == 1, inc to 2
return
** static key is wrong!
jump_label_update()
jump_label_unlock()
Testing the static key at the point marked by (**) will follow the
wrong path for jumps that have not been patched yet. This can
actually happen when creating many KVM virtual machines with userspace
LAPIC emulation; just run several copies of the following program:
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <linux/kvm.h>
int main(void)
{
for (;;) {
int kvmfd = open("/dev/kvm", O_RDONLY);
int vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
close(ioctl(vmfd, KVM_CREATE_VCPU, 1));
close(vmfd);
close(kvmfd);
}
return 0;
}
Every KVM_CREATE_VCPU ioctl will attempt a static_key_slow_inc() call.
The static key's purpose is to skip NULL pointer checks and indeed one
of the processes eventually dereferences NULL.
As explained in the commit that introduced the bug:
706249c222 ("locking/static_keys: Rework update logic")
jump_label_update() needs key.enabled to be true. The solution adopted
here is to temporarily make key.enabled == -1, and use go down the
slow path when key.enabled <= 0.
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 706249c222 ("locking/static_keys: Rework update logic")
Link: http://lkml.kernel.org/r/1466527937-69798-1-git-send-email-pbonzini@redhat.com
[ Small stylistic edits to the changelog and the code. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2c610022711675ee908b903d242f0b90e1db661f upstream.
While this prior commit:
54cf809b9512 ("locking,qspinlock: Fix spin_is_locked() and spin_unlock_wait()")
... fixes spin_is_locked() and spin_unlock_wait() for the usage
in ipc/sem and netfilter, it does not in fact work right for the
usage in task_work and futex.
So while the 2 locks crossed problem:
spin_lock(A) spin_lock(B)
if (!spin_is_locked(B)) spin_unlock_wait(A)
foo() foo();
... works with the smp_mb() injected by both spin_is_locked() and
spin_unlock_wait(), this is not sufficient for:
flag = 1;
smp_mb(); spin_lock()
spin_unlock_wait() if (!flag)
// add to lockless list
// iterate lockless list
... because in this scenario, the store from spin_lock() can be delayed
past the load of flag, uncrossing the variables and loosing the
guarantee.
This patch reworks spin_is_locked() and spin_unlock_wait() to work in
both cases by exploiting the observation that while the lock byte
store can be delayed, the contender must have registered itself
visibly in other state contained in the word.
It also allows for architectures to override both functions, as PPC
and ARM64 have an additional issue for which we currently have no
generic solution.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Giovanni Gherdovich <ggherdovich@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Pan Xinhui <xinhui.pan@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <waiman.long@hpe.com>
Cc: Will Deacon <will.deacon@arm.com>
Fixes: 54cf809b9512 ("locking,qspinlock: Fix spin_is_locked() and spin_unlock_wait()")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit ceb56070359b7329b5678b5d95a376fcb24767be ]
Commit dead9f29dd ("perf: Fix race in BPF program unregister") moved
destruction of BPF program from free_event_rcu() callback to __free_event(),
which is problematic if used with tail calls: if prog A is attached as
trace event directly, but at the same time present in a tail call map used
by another trace event program elsewhere, then we need to delay destruction
via RCU grace period since it can still be in use by the program doing the
tail call (the prog first needs to be dropped from the tail call map, then
trace event with prog A attached destroyed, so we get immediate destruction).
Fixes: dead9f29dd ("perf: Fix race in BPF program unregister")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Jann Horn <jann@thejh.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 29d6455178a09e1dc340380c582b13356227e8df upstream.
Until now, hitting this BUG_ON caused a recursive oops (because oops
handling involves do_exit(), which calls into the scheduler, which in
turn raises an oops), which caused stuff below the stack to be
overwritten until a panic happened (e.g. via an oops in interrupt
context, caused by the overwritten CPU index in the thread_info).
Just panic directly.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 612bacad78ba6d0a91166fc4487af114bac172a8 ]
Follow-up to commit e27f4a942a0e ("bpf: Use mount_nodev not mount_ns
to mount the bpf filesystem"), which removes the FS_USERNS_MOUNT flag.
The original idea was to have a per mountns instance instead of a
single global fs instance, but that didn't work out and we had to
switch to mount_nodev() model. The intent of that middle ground was
that we avoid users who don't play nice to create endless instances
of bpf fs which are difficult to control and discover from an admin
point of view, but at the same time it would have allowed us to be
more flexible with regard to namespaces.
Therefore, since we now did the switch to mount_nodev() as a fix
where individual instances are created, we also need to remove userns
mount flag along with it to avoid running into mentioned situation.
I don't expect any breakage at this early point in time with removing
the flag and we can revisit this later should the requirement for
this come up with future users. This and commit e27f4a942a0e have
been split to facilitate tracking should any of them run into the
unlikely case of causing a regression.
Fixes: b2197755b2 ("bpf: add support for persistent maps/progs")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit e27f4a942a0ee4b84567a3c6cfa84f273e55cbb7 ]
While reviewing the filesystems that set FS_USERNS_MOUNT I spotted the
bpf filesystem. Looking at the code I saw a broken usage of mount_ns
with current->nsproxy->mnt_ns. As the code does not acquire a
reference to the mount namespace it can not possibly be correct to
store the mount namespace on the superblock as it does.
Replace mount_ns with mount_nodev so that each mount of the bpf
filesystem returns a distinct instance, and the code is not buggy.
In discussion with Hannes Frederic Sowa it was reported that the use
of mount_ns was an attempt to have one bpf instance per mount
namespace, in an attempt to keep resources that pin resources from
hiding. That intent simply does not work, the vfs is not built to
allow that kind of behavior. Which means that the bpf filesystem
really is buggy both semantically and in it's implemenation as it does
not nor can it implement the original intent.
This change is userspace visible, but my experience with similar
filesystems leads me to believe nothing will break with a model of each
mount of the bpf filesystem is distinct from all others.
Fixes: b2197755b2 ("bpf: add support for persistent maps/progs")
Cc: Hannes Frederic Sowa <hannes@stressinduktion.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 759c01142a5d0f364a462346168a56de28a80f52 upstream.
On no-so-small systems, it is possible for a single process to cause an
OOM condition by filling large pipes with data that are never read. A
typical process filling 4000 pipes with 1 MB of data will use 4 GB of
memory. On small systems it may be tricky to set the pipe max size to
prevent this from happening.
This patch makes it possible to enforce a per-user soft limit above
which new pipes will be limited to a single page, effectively limiting
them to 4 kB each, as well as a hard limit above which no new pipes may
be created for this user. This has the effect of protecting the system
against memory abuse without hurting other users, and still allowing
pipes to work correctly though with less data at once.
The limit are controlled by two new sysctls : pipe-user-pages-soft, and
pipe-user-pages-hard. Both may be disabled by setting them to zero. The
default soft limit allows the default number of FDs per process (1024)
to create pipes of the default size (64kB), thus reaching a limit of 64MB
before starting to create only smaller pipes. With 256 processes limited
to 1024 FDs each, this results in 1024*64kB + (256*1024 - 1024) * 4kB =
1084 MB of memory allocated for a user. The hard limit is disabled by
default to avoid breaking existing applications that make intensive use
of pipes (eg: for splicing).
Reported-by: socketpair@gmail.com
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Mitigates: CVE-2013-4312 (Linux 2.0+)
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Willy Tarreau <w@1wt.eu>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Moritz Muehlenhoff <moritz@wikimedia.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bf959931ddb88c4e4366e96dd22e68fa0db9527c upstream.
The following program (simplified version of generated by syzkaller)
#include <pthread.h>
#include <unistd.h>
#include <sys/ptrace.h>
#include <stdio.h>
#include <signal.h>
void *thread_func(void *arg)
{
ptrace(PTRACE_TRACEME, 0,0,0);
return 0;
}
int main(void)
{
pthread_t thread;
if (fork())
return 0;
while (getppid() != 1)
;
pthread_create(&thread, NULL, thread_func, NULL);
pthread_join(thread, NULL);
return 0;
}
creates an unreapable zombie if /sbin/init doesn't use __WALL.
This is not a kernel bug, at least in a sense that everything works as
expected: debugger should reap a traced sub-thread before it can reap the
leader, but without __WALL/__WCLONE do_wait() ignores sub-threads.
Unfortunately, it seems that /sbin/init in most (all?) distributions
doesn't use it and we have to change the kernel to avoid the problem.
Note also that most init's use sys_waitid() which doesn't allow __WALL, so
the necessary user-space fix is not that trivial.
This patch just adds the "ptrace" check into eligible_child(). To some
degree this matches the "tsk->ptrace" in exit_notify(), ->exit_signal is
mostly ignored when the tracee reports to debugger. Or WSTOPPED, the
tracer doesn't need to set this flag to wait for the stopped tracee.
This obviously means the user-visible change: __WCLONE and __WALL no
longer have any meaning for debugger. And I can only hope that this won't
break something, but at least strace/gdb won't suffer.
We could make a more conservative change. Say, we can take __WCLONE into
account, or !thread_group_leader(). But it would be nice to not
complicate these historical/confusing checks.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Jan Kratochvil <jan.kratochvil@redhat.com>
Cc: "Michael Kerrisk (man-pages)" <mtk.manpages@gmail.com>
Cc: Pedro Alves <palves@redhat.com>
Cc: Roland McGrath <roland@hack.frob.com>
Cc: <syzkaller@googlegroups.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 20878232c52329f92423d27a60e48b6a6389e0dd upstream.
Systems show a minimal load average of 0.00, 0.01, 0.05 even when they
have no load at all.
Uptime and /proc/loadavg on all systems with kernels released during the
last five years up until kernel version 4.6-rc5, show a 5- and 15-minute
minimum loadavg of 0.01 and 0.05 respectively. This should be 0.00 on
idle systems, but the way the kernel calculates this value prevents it
from getting lower than the mentioned values.
Likewise but not as obviously noticeable, a fully loaded system with no
processes waiting, shows a maximum 1/5/15 loadavg of 1.00, 0.99, 0.95
(multiplied by number of cores).
Once the (old) load becomes 93 or higher, it mathematically can never
get lower than 93, even when the active (load) remains 0 forever.
This results in the strange 0.00, 0.01, 0.05 uptime values on idle
systems. Note: 93/2048 = 0.0454..., which rounds up to 0.05.
It is not correct to add a 0.5 rounding (=1024/2048) here, since the
result from this function is fed back into the next iteration again,
so the result of that +0.5 rounding value then gets multiplied by
(2048-2037), and then rounded again, so there is a virtual "ghost"
load created, next to the old and active load terms.
By changing the way the internally kept value is rounded, that internal
value equivalent now can reach 0.00 on idle, and 1.00 on full load. Upon
increasing load, the internally kept load value is rounded up, when the
load is decreasing, the load value is rounded down.
The modified code was tested on nohz=off and nohz kernels. It was tested
on vanilla kernel 4.6-rc5 and on centos 7.1 kernel 3.10.0-327. It was
tested on single, dual, and octal cores system. It was tested on virtual
hosts and bare hardware. No unwanted effects have been observed, and the
problems that the patch intended to fix were indeed gone.
Tested-by: Damien Wyart <damien.wyart@free.fr>
Signed-off-by: Vik Heyndrickx <vik.heyndrickx@veribox.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Doug Smythies <dsmythies@telus.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 0f004f5a69 ("sched: Cure more NO_HZ load average woes")
Link: http://lkml.kernel.org/r/e8d32bff-d544-7748-72b5-3c86cc71f09f@veribox.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 59643d1535eb220668692a5359de22545af579f6 upstream.
If the size passed to ring_buffer_resize() is greater than MAX_LONG - BUF_PAGE_SIZE
then the DIV_ROUND_UP() will return zero.
Here's the details:
# echo 18014398509481980 > /sys/kernel/debug/tracing/buffer_size_kb
tracing_entries_write() processes this and converts kb to bytes.
18014398509481980 << 10 = 18446744073709547520
and this is passed to ring_buffer_resize() as unsigned long size.
size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
Where DIV_ROUND_UP(a, b) is (a + b - 1)/b
BUF_PAGE_SIZE is 4080 and here
18446744073709547520 + 4080 - 1 = 18446744073709551599
where 18446744073709551599 is still smaller than 2^64
2^64 - 18446744073709551599 = 17
But now 18446744073709551599 / 4080 = 4521260802379792
and size = size * 4080 = 18446744073709551360
This is checked to make sure its still greater than 2 * 4080,
which it is.
Then we convert to the number of buffer pages needed.
nr_page = DIV_ROUND_UP(size, BUF_PAGE_SIZE)
but this time size is 18446744073709551360 and
2^64 - (18446744073709551360 + 4080 - 1) = -3823
Thus it overflows and the resulting number is less than 4080, which makes
3823 / 4080 = 0
an nr_pages is set to this. As we already checked against the minimum that
nr_pages may be, this causes the logic to fail as well, and we crash the
kernel.
There's no reason to have the two DIV_ROUND_UP() (that's just result of
historical code changes), clean up the code and fix this bug.
Fixes: 83f40318da ("ring-buffer: Make removal of ring buffer pages atomic")
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9b94a8fba501f38368aef6ac1b30e7335252a220 upstream.
The size variable to change the ring buffer in ftrace is a long. The
nr_pages used to update the ring buffer based on the size is int. On 64 bit
machines this can cause an overflow problem.
For example, the following will cause the ring buffer to crash:
# cd /sys/kernel/debug/tracing
# echo 10 > buffer_size_kb
# echo 8556384240 > buffer_size_kb
Then you get the warning of:
WARNING: CPU: 1 PID: 318 at kernel/trace/ring_buffer.c:1527 rb_update_pages+0x22f/0x260
Which is:
RB_WARN_ON(cpu_buffer, nr_removed);
Note each ring buffer page holds 4080 bytes.
This is because:
1) 10 causes the ring buffer to have 3 pages.
(10kb requires 3 * 4080 pages to hold)
2) (2^31 / 2^10 + 1) * 4080 = 8556384240
The value written into buffer_size_kb is shifted by 10 and then passed
to ring_buffer_resize(). 8556384240 * 2^10 = 8761737461760
3) The size passed to ring_buffer_resize() is then divided by BUF_PAGE_SIZE
which is 4080. 8761737461760 / 4080 = 2147484672
4) nr_pages is subtracted from the current nr_pages (3) and we get:
2147484669. This value is saved in a signed integer nr_pages_to_update
5) 2147484669 is greater than 2^31 but smaller than 2^32, a signed int
turns into the value of -2147482627
6) As the value is a negative number, in update_pages_handler() it is
negated and passed to rb_remove_pages() and 2147482627 pages will
be removed, which is much larger than 3 and it causes the warning
because not all the pages asked to be removed were removed.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=118001
Fixes: 7a8e76a382 ("tracing: unified trace buffer")
Reported-by: Hao Qin <QEver.cn@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 79c9ce57eb2d5f1497546a3946b4ae21b6fdc438 upstream.
Jann reported that the ptrace_may_access() check in
find_lively_task_by_vpid() is racy against exec().
Specifically:
perf_event_open() execve()
ptrace_may_access()
commit_creds()
... if (get_dumpable() != SUID_DUMP_USER)
perf_event_exit_task();
perf_install_in_context()
would result in installing a counter across the creds boundary.
Fix this by wrapping lots of perf_event_open() in cred_guard_mutex.
This should be fine as perf_event_exit_task() is already called with
cred_guard_mutex held, so all perf locks already nest inside it.
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: He Kuang <hekuang@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f7c17d26f43d5cc1b7a6b896cd2fa24a079739b9 upstream.
------------[ cut here ]------------
WARNING: CPU: 0 PID: 16 at kernel/workqueue.c:4559 rebind_workers+0x1c0/0x1d0
Modules linked in:
CPU: 0 PID: 16 Comm: cpuhp/0 Not tainted 4.6.0-rc4+ #31
Hardware name: IBM IBM System x3550 M4 Server -[7914IUW]-/00Y8603, BIOS -[D7E128FUS-1.40]- 07/23/2013
0000000000000000 ffff881037babb58 ffffffff8139d885 0000000000000010
0000000000000000 0000000000000000 0000000000000000 ffff881037babba8
ffffffff8108505d ffff881037ba0000 000011cf3e7d6e60 0000000000000046
Call Trace:
dump_stack+0x89/0xd4
__warn+0xfd/0x120
warn_slowpath_null+0x1d/0x20
rebind_workers+0x1c0/0x1d0
workqueue_cpu_up_callback+0xf5/0x1d0
notifier_call_chain+0x64/0x90
? trace_hardirqs_on_caller+0xf2/0x220
? notify_prepare+0x80/0x80
__raw_notifier_call_chain+0xe/0x10
__cpu_notify+0x35/0x50
notify_down_prepare+0x5e/0x80
? notify_prepare+0x80/0x80
cpuhp_invoke_callback+0x73/0x330
? __schedule+0x33e/0x8a0
cpuhp_down_callbacks+0x51/0xc0
cpuhp_thread_fun+0xc1/0xf0
smpboot_thread_fn+0x159/0x2a0
? smpboot_create_threads+0x80/0x80
kthread+0xef/0x110
? wait_for_completion+0xf0/0x120
? schedule_tail+0x35/0xf0
ret_from_fork+0x22/0x50
? __init_kthread_worker+0x70/0x70
---[ end trace eb12ae47d2382d8f ]---
notify_down_prepare: attempt to take down CPU 0 failed
This bug can be reproduced by below config w/ nohz_full= all cpus:
CONFIG_BOOTPARAM_HOTPLUG_CPU0=y
CONFIG_DEBUG_HOTPLUG_CPU0=y
CONFIG_NO_HZ_FULL=y
As Thomas pointed out:
| If a down prepare callback fails, then DOWN_FAILED is invoked for all
| callbacks which have successfully executed DOWN_PREPARE.
|
| But, workqueue has actually two notifiers. One which handles
| UP/DOWN_FAILED/ONLINE and one which handles DOWN_PREPARE.
|
| Now look at the priorities of those callbacks:
|
| CPU_PRI_WORKQUEUE_UP = 5
| CPU_PRI_WORKQUEUE_DOWN = -5
|
| So the call order on DOWN_PREPARE is:
|
| CB 1
| CB ...
| CB workqueue_up() -> Ignores DOWN_PREPARE
| CB ...
| CB X ---> Fails
|
| So we call up to CB X with DOWN_FAILED
|
| CB 1
| CB ...
| CB workqueue_up() -> Handles DOWN_FAILED
| CB ...
| CB X-1
|
| So the problem is that the workqueue stuff handles DOWN_FAILED in the up
| callback, while it should do it in the down callback. Which is not a good idea
| either because it wants to be called early on rollback...
|
| Brilliant stuff, isn't it? The hotplug rework will solve this problem because
| the callbacks become symetric, but for the existing mess, we need some
| workaround in the workqueue code.
The boot CPU handles housekeeping duty(unbound timers, workqueues,
timekeeping, ...) on behalf of full dynticks CPUs. It must remain
online when nohz full is enabled. There is a priority set to every
notifier_blocks:
workqueue_cpu_up > tick_nohz_cpu_down > workqueue_cpu_down
So tick_nohz_cpu_down callback failed when down prepare cpu 0, and
notifier_blocks behind tick_nohz_cpu_down will not be called any
more, which leads to workers are actually not unbound. Then hotplug
state machine will fallback to undo and online cpu 0 again. Workers
will be rebound unconditionally even if they are not unbound and
trigger the warning in this progress.
This patch fix it by catching !DISASSOCIATED to avoid rebind bound
workers.
Cc: Tejun Heo <tj@kernel.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Frédéric Weisbecker <fweisbec@gmail.com>
Suggested-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 6aff67c85c9e5a4bc99e5211c1bac547936626ca ]
The commit 35578d7984 ("bpf: Implement function bpf_perf_event_read() that get the selected hardware PMU conuter")
introduced clever way to check bpf_helper<->map_type compatibility.
Later on commit a43eec3042 ("bpf: introduce bpf_perf_event_output() helper") adjusted
the logic and inadvertently broke it.
Get rid of the clever bool compare and go back to two-way check
from map and from helper perspective.
Fixes: a43eec3042 ("bpf: introduce bpf_perf_event_output() helper")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 92117d8443bc5afacc8d5ba82e541946310f106e ]
On a system with >32Gbyte of phyiscal memory and infinite RLIMIT_MEMLOCK,
the malicious application may overflow 32-bit bpf program refcnt.
It's also possible to overflow map refcnt on 1Tb system.
Impose 32k hard limit which means that the same bpf program or
map cannot be shared by more than 32k processes.
Fixes: 1be7f75d16 ("bpf: enable non-root eBPF programs")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 8358b02bf67d3a5d8a825070e1aa73f25fb2e4c7 ]
When bpf(BPF_PROG_LOAD, ...) was invoked with a BPF program whose bytecode
references a non-map file descriptor as a map file descriptor, the error
handling code called fdput() twice instead of once (in __bpf_map_get() and
in replace_map_fd_with_map_ptr()). If the file descriptor table of the
current task is shared, this causes f_count to be decremented too much,
allowing the struct file to be freed while it is still in use
(use-after-free). This can be exploited to gain root privileges by an
unprivileged user.
This bug was introduced in
commit 0246e64d9a ("bpf: handle pseudo BPF_LD_IMM64 insn"), but is only
exploitable since
commit 1be7f75d16 ("bpf: enable non-root eBPF programs") because
previously, CAP_SYS_ADMIN was required to reach the vulnerable code.
(posted publicly according to request by maintainer)
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit d82bccc69041a51f7b7b9b4a36db0772f4cdba21 ]
verifier must check for reserved size bits in instruction opcode and
reject BPF_LD | BPF_ABS | BPF_DW and BPF_LD | BPF_IND | BPF_DW instructions,
otherwise interpreter will WARN_RATELIMIT on them during execution.
Fixes: ddd872bc30 ("bpf: verifier: add checks for BPF_ABS | BPF_IND instructions")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 854145e0a8e9a05f7366d240e2f99d9c1ca6d6dd upstream.
Currently register functions for events will be called
through the 'reg' field of event class directly without
any check when seting up triggers.
Triggers for events that don't support register through
debug fs (events under events/ftrace are for trace-cmd to
read event format, and most of them don't have a register
function except events/ftrace/functionx) can't be enabled
at all, and an oops will be hit when setting up trigger
for those events, so just not creating them is an easy way
to avoid the oops.
Link: http://lkml.kernel.org/r/1462275274-3911-1-git-send-email-chuhu@redhat.com
Fixes: 85f2b08268 ("tracing: Add basic event trigger framework")
Signed-off-by: Chunyu Hu <chuhu@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 920c720aa5aa3900a7f1689228fdfc2580a91e7e upstream.
Similar to commit b4b29f9485 ("locking/osq: Fix ordering of node
initialisation in osq_lock") the use of xchg_acquire() is
fundamentally broken with MCS like constructs.
Furthermore, it turns out we rely on the global transitivity of this
operation because the unlock path observes the pointer with a
READ_ONCE(), not an smp_load_acquire().
This is non-critical because the MCS code isn't actually used and
mostly serves as documentation, a stepping stone to the more complex
things we've build on top of the idea.
Reported-by: Andrea Parri <parri.andrea@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Fixes: 3552a07a9c ("locking/mcs: Use acquire/release semantics")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8bb5ef79bc0f4016ecf79e8dce6096a3c63603e4 upstream.
There are three subsystem callbacks in css shutdown path -
css_offline(), css_released() and css_free(). Except for
css_released(), cgroup core didn't guarantee the order of invocation.
css_offline() or css_free() could be called on a parent css before its
children. This behavior is unexpected and led to bugs in cpu and
memory controller.
The previous patch updated ordering for css_offline() which fixes the
cpu controller issue. While there currently isn't a known bug caused
by misordering of css_free() invocations, let's fix it too for
consistency.
css_free() ordering can be trivially fixed by moving putting of the
parent css below css_free() invocation.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5cf1cacb49aee39c3e02ae87068fc3c6430659b0 upstream.
Since e93ad19d0564 ("cpuset: make mm migration asynchronous"), cpuset
kicks off asynchronous NUMA node migration if necessary during task
migration and flushes it from cpuset_post_attach_flush() which is
called at the end of __cgroup_procs_write(). This is to avoid
performing migration with cgroup_threadgroup_rwsem write-locked which
can lead to deadlock through dependency on kworker creation.
memcg has a similar issue with charge moving, so let's convert it to
an official callback rather than the current one-off cpuset specific
function. This patch adds cgroup_subsys->post_attach callback and
makes cpuset register cpuset_post_attach_flush() as its ->post_attach.
The conversion is mostly one-to-one except that the new callback is
called under cgroup_mutex. This is to guarantee that no other
migration operations are started before ->post_attach callbacks are
finished. cgroup_mutex is one of the outermost mutex in the system
and has never been and shouldn't be a problem. We can add specialized
synchronization around __cgroup_procs_write() but I don't think
there's any noticeable benefit.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>