When we call _PDC, we get a handle to the processor, allocate the
object list buffer as needed, and free it immediately after calling
_PDC.
There's no need to drag around this object list with us everywhere
else, so let's just get rid of it.
Signed-off-by: Alex Chiang <achiang@hp.com>
Signed-off-by: Len Brown <len.brown@intel.com>
When calling _PDC, we really only need the handle to the processor
to call the method; we don't look at any other parts of the
struct acpi_processor * given to us.
In the early path, when we walk the namespace, we are given the
handle directly, so just pass it through to acpi_processor_set_pdc()
without stuffing it into a wasteful struct acpi_processor allocated
on the stack each time
This saves 2834 bytes of stack.
Update the interface accordingly.
Signed-off-by: Alex Chiang <achiang@hp.com>
Signed-off-by: Len Brown <len.brown@intel.com>
The x86 and ia64 implementations of the function in $subject are
exactly the same.
Also, since the arch-specific implementations of setting _PDC have
been completely hollowed out, remove the empty shells.
Cc: Tony Luck <tony.luck@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Alex Chiang <achiang@hp.com>
Signed-off-by: Len Brown <len.brown@intel.com>
The only thing arch-specific about calling _PDC is what bits get
set in the input obj_list buffer.
There's no need for several levels of indirection to twiddle those
bits. Additionally, since we're just messing around with a buffer,
we can simplify the interface; no need to pass around the entire
struct acpi_processor * just to get at the buffer.
Cc: Tony Luck <tony.luck@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Alex Chiang <achiang@hp.com>
Signed-off-by: Len Brown <len.brown@intel.com>
We discovered that at least one machine (HP Envy), methods in the DSDT
attempt to call external methods defined in a dynamically loaded SSDT.
Unfortunately, the DSDT methods we are trying to call are part of the
EC initialization, which happens very early, and the the dynamic SSDT
is only loaded when a processor _PDC method runs much later.
This results in namespace lookup errors for the (as of yet) undefined
methods.
Since Windows doesn't have any issues with this machine, we take it
as a hint that they must be evaluating _PDC much earlier than we are.
Thus, the proper thing for Linux to do should be to match the Windows
implementation more closely.
Provide a mechanism to call _PDC before we enable the EC. Doing so loads
the dynamic tables, and allows the EC to be enabled correctly.
The ACPI processor driver will still evaluate _PDC in its .add() method
to cover the hotplug case.
Resolves: http://bugzilla.kernel.org/show_bug.cgi?id=14824
Cc: ming.m.lin@intel.com
Signed-off-by: Alex Chiang <achiang@hp.com>
Signed-off-by: Len Brown <len.brown@intel.com>
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/davej/cpufreq:
[ACPI/CPUFREQ] Introduce bios_limit per cpu cpufreq sysfs interface
[CPUFREQ] make internal cpufreq_add_dev_* static
[CPUFREQ] use an enum for speedstep processor identification
[CPUFREQ] Document units for transition latency
[CPUFREQ] Use global sysfs cpufreq structure for conservative governor tunings
[CPUFREQ] Documentation: ABI: /sys/devices/system/cpu/cpu#/cpufreq/
[CPUFREQ] powernow-k6: set transition latency value so ondemand governor can be used
[CPUFREQ] cpumask: don't put a cpumask on the stack in x86...cpufreq/powernow-k8.c
This interface is mainly intended (and implemented) for ACPI _PPC BIOS
frequency limitations, but other cpufreq drivers can also use it for
similar use-cases.
Why is this needed:
Currently it's not obvious why cpufreq got limited.
People see cpufreq/scaling_max_freq reduced, but this could have
happened by:
- any userspace prog writing to scaling_max_freq
- thermal limitations
- hardware (_PPC in ACPI case) limitiations
Therefore export bios_limit (in kHz) to:
- Point the user that it's the BIOS (broken or intended) which limits
frequency
- Export it as a sysfs interface for userspace progs.
While this was a rarely used feature on laptops, there will appear
more and more server implemenations providing "Green IT" features like
allowing the service processor to limit the frequency. People want
to know about HW/BIOS frequency limitations.
All ACPI P-state driven cpufreq drivers are covered with this patch:
- powernow-k8
- powernow-k7
- acpi-cpufreq
Tested with a patched DSDT which limits the first two cores (_PPC returns 1)
via _PPC, exposed by bios_limit:
# echo 2200000 >cpu2/cpufreq/scaling_max_freq
# cat cpu*/cpufreq/scaling_max_freq
2600000
2600000
2200000
2200000
# #scaling_max_freq shows general user/thermal/BIOS limitations
# cat cpu*/cpufreq/bios_limit
2600000
2600000
2800000
2800000
# #bios_limit only shows the HW/BIOS limitation
CC: Pallipadi Venkatesh <venkatesh.pallipadi@intel.com>
CC: Len Brown <lenb@kernel.org>
CC: davej@codemonkey.org.uk
CC: linux@dominikbrodowski.net
Signed-off-by: Thomas Renninger <trenn@suse.de>
Signed-off-by: Dave Jones <davej@redhat.com>
According to the ACPI spec(section 8.4.4.3) OSPM should convey the _PPC
evaluations status to the platform if there exists the _OST object.
The _OST contains two arguments:
The first is the PERFORMANCE notificatin event.
The second is the status of _PPC object.
OSPM will convey the _PPC evaluation status to the platform.
Of course when the module parameter of "ignore_ppc" is added, OSPM won't
evaluate the _PPC object. But it will call the _OST object.
At the same time the _OST object will be evaluated only when the PERFORMANCE
notification event is received.
Signed-off-by: Zhao Yakui <yakui.zhao@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Feedback from Hidetoshi Seto and Kenji Kaneshige incorporated. This
correctly handles PCI-X bridges, PCIe root ports and endpoints, and
prints debug messages when invalid/reserved types are found in the
HEST. PCI devices not in domain/segment 0 are not represented in
HEST, thus will be ignored.
Today, the PCIe Advanced Error Reporting (AER) driver attaches itself
to every PCIe root port for which BIOS reports it should, via ACPI
_OSC.
However, _OSC alone is insufficient for newer BIOSes. Part of ACPI
4.0 is the new APEI (ACPI Platform Error Interfaces) which is a way
for OS and BIOS to handshake over which errors for which components
each will handle. One table in ACPI 4.0 is the Hardware Error Source
Table (HEST), where BIOS can define that errors for certain PCIe
devices (or all devices), should be handled by BIOS ("Firmware First
mode"), rather than be handled by the OS.
Dell PowerEdge 11G server BIOS defines Firmware First mode in HEST, so
that it may manage such errors, log them to the System Event Log, and
possibly take other actions. The aer driver should honor this, and
not attach itself to devices noted as such.
Furthermore, Kenji Kaneshige reminded us to disallow changing the AER
registers when respecting Firmware First mode. Platform firmware is
expected to manage these, and if changes to them are allowed, it could
break that firmware's behavior.
The HEST parsing code may be replaced in the future by a more
feature-rich implementation. This patch provides the minimum needed
to prevent breakage until that implementation is available.
Reviewed-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Matt Domsch <Matt_Domsch@dell.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Every acpi_device has at least one ID (if there's no _HID or _CID, we
give it a synthetic or default ID). So there's no longer a need to
check whether an ID exists; we can just use it.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Len Brown <len.brown@intel.com>
We now keep a single list of IDs that includes both the _HID and any
_CIDs. We no longer need to keep track of whether the device has a _CID.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Len Brown <len.brown@intel.com>
There's no need to treat _HID and _CID differently. Keeping them in
a single list makes code that uses the IDs a little simpler because it
can just traverse the list rather than checking "do we have a HID?",
"do we have any CIDs?"
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Reviewed-by: Alex Chiang <achiang@hp.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Add acpi_bus_get_status_handle() so we can get the status of a namespace
object before building a struct acpi_device.
This removes a use of "device->flags.dynamic_status", a cached indicator of
whether _STA exists. It seems simpler and more reliable to just evaluate
_STA and catch AE_NOT_FOUND errors.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Len Brown <len.brown@intel.com>
We can identify the root of the ACPI device tree by the fact that it
has no parent. This is simpler than passing around ACPI_BUS_TYPE_SYSTEM
and will help remove special treatment of the device tree root.
Currently, we add the root by hand with ACPI_BUS_TYPE_SYSTEM. If we
traverse the tree treating the root as just another device and use
acpi_get_type(), the root shows up as ACPI_TYPE_DEVICE.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Most uses of the ACPI bus device_type (ACPI_BUS_TYPE_DEVICE,
ACPI_BUS_TYPE_POWER, etc) are during device initialization, but
we do need it later for notify handler installation, since that
is different for fixed hardware devices vs. namespace devices.
This patch saves the device_type in the acpi_device structure,
so we can check that rather than comparing against the _HID string.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Len Brown <len.brown@intel.com>
* 'drm-intel-next' of git://git.kernel.org/pub/scm/linux/kernel/git/anholt/drm-intel: (57 commits)
drm/i915: Handle ERESTARTSYS during page fault
drm/i915: Warn before mmaping a purgeable buffer.
drm/i915: Track purged state.
drm/i915: Remove eviction debug spam
drm/i915: Immediately discard any backing storage for uneeded objects
drm/i915: Do not mis-classify clean objects as purgeable
drm/i915: Whitespace correction for madv
drm/i915: BUG_ON page refleak during unbind
drm/i915: Search harder for a reusable object
drm/i915: Clean up evict from list.
drm/i915: Add tracepoints
drm/i915: framebuffer compression for GM45+
drm/i915: split display functions by chip type
drm/i915: Skip the sanity checks if the current relocation is valid
drm/i915: Check that the relocation points to within the target
drm/i915: correct FBC update when pipe base update occurs
drm/i915: blacklist Acer AspireOne lid status
ACPI: make ACPI button funcs no-ops if not built in
drm/i915: prevent FIFO calculation overflows on 32 bits with high dotclocks
drm/i915: intel_display.c handle latency variable efficiently
...
Fix up trivial conflicts in drivers/gpu/drm/i915/{i915_dma.c|i915_drv.h}