* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next-2.6: (1674 commits)
qlcnic: adding co maintainer
ixgbe: add support for active DA cables
ixgbe: dcb, do not tag tc_prio_control frames
ixgbe: fix ixgbe_tx_is_paused logic
ixgbe: always enable vlan strip/insert when DCB is enabled
ixgbe: remove some redundant code in setting FCoE FIP filter
ixgbe: fix wrong offset to fc_frame_header in ixgbe_fcoe_ddp
ixgbe: fix header len when unsplit packet overflows to data buffer
ipv6: Never schedule DAD timer on dead address
ipv6: Use POSTDAD state
ipv6: Use state_lock to protect ifa state
ipv6: Replace inet6_ifaddr->dead with state
cxgb4: notify upper drivers if the device is already up when they load
cxgb4: keep interrupts available when the ports are brought down
cxgb4: fix initial addition of MAC address
cnic: Return SPQ credit to bnx2x after ring setup and shutdown.
cnic: Convert cnic_local_flags to atomic ops.
can: Fix SJA1000 command register writes on SMP systems
bridge: fix build for CONFIG_SYSFS disabled
ARCNET: Limit com20020 PCI ID matches for SOHARD cards
...
Fix up various conflicts with pcmcia tree drivers/net/
{pcmcia/3c589_cs.c, wireless/orinoco/orinoco_cs.c and
wireless/orinoco/spectrum_cs.c} and feature removal
(Documentation/feature-removal-schedule.txt).
Also fix a non-content conflict due to pm_qos_requirement getting
renamed in the PM tree (now pm_qos_request) in net/mac80211/scan.c
* 'viafb-next' of git://git.lwn.net/linux-2.6: (35 commits)
viafb: move some include files to include/linux
viafb: Eliminate some global.h references
viafb: get rid of i2c debug cruft
viafb: fold via_io.h into via-core.h
viafb: Fix initialization error paths
viafb: Do not remove gpiochip under spinlock
viafb: make procfs entries optional
viafb: fix proc entry removal
viafb: improve misc register handling
viafb: replace inb/outb
viafb: move some modesetting functions to a seperate file
viafb: unify modesetting functions
viafb: Reserve framebuffer memory for the upcoming camera driver
viafb: Add a simple VX855 DMA engine driver
viafb: Add a simple interrupt management infrastructure
via: Rationalize vt1636 detection
viafb: Introduce viafb_find_i2c_adapter()
via: Do not attempt I/O on inactive I2C adapters
viafb: Turn GPIO and i2c into proper platform devices
viafb: Convert GPIO and i2c to the new indexed port ops
...
Now that all callers are converted over, remove the compatibility
functions and all is good.
Cc: Daniel Mack <daniel@caiaq.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Now on one uses this function and it seems useless,
so remove usb_find_device.
[tom@tom linux-2.6-next]$ grep -r -n -I usb_find_device ./
drivers/media/dvb/dvb-usb/dvb-usb-init.c:160:static struct
dvb_usb_device_description * dvb_usb_find_device(struct usb_device
*udev,struct dvb_usb_device_properties *props, int *cold)
drivers/media/dvb/dvb-usb/dvb-usb-init.c:230: if ((desc =
dvb_usb_find_device(udev,props,&cold)) == NULL) {
drivers/usb/core/usb.c:630: * usb_find_device - find a specific usb device in the system
drivers/usb/core/usb.c:642:struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
Signed-off-by: Ming Lei <tom.leiming@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
The FunctionFS is a USB composite function that can be used
with the composite framework to create an USB gadget.
>From kernel point of view it is just a composite function with
some unique behaviour. It may be added to an USB
configuration only after the user space driver has registered
by writing descriptors and strings (the user space program has
to provide the same information that kernel level composite
functions provide when they are added to the configuration).
>From user space point of view it is a file system which when
mounted provide an "ep0" file. User space driver need to
write descriptors and strings to that file. It does not need
to worry about endpoints, interfaces or strings numbers but
simply provide descriptors such as if the function was the
only one (endpoints and strings numbers starting from one and
interface numbers starting from core). The FunctionFS changes
numbers of those as needed also handling situation when
numbers differ in different configurations.
When descriptors and strings are written "ep#" files appear
(one for each declared endpoint) which handle communication on
a single endpoint. Again, FunctionFS takes care of the real
numbers and changing of the configuration (which means that
"ep1" file may be really mapped to (say) endpoint 3 (and when
configuration changes to (say) endpoint 2)). "ep0" is used
for receiving events and handling setup requests.
When all files are closed the function disables itself.
Signed-off-by: Michal Nazarewicz <m.nazarewicz@samsung.com>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
New wait_event_interruptible{,_exclusive}_locked{,_irq} macros added.
They work just like versions without _locked* suffix but require the
wait queue's lock to be held. Also __wake_up_locked() is now exported
as to pair it with the above macros.
The use case of this new facility is when one uses wait queue's lock
to protect a data structure. This may be advantageous if the
structure needs to be protected by a spinlock anyway. In particular,
with additional spinlock the following code has to be used to wait
for a condition:
spin_lock(&data.lock);
...
for (ret = 0; !ret && !(condition); ) {
spin_unlock(&data.lock);
ret = wait_event_interruptible(data.wqh, (condition));
spin_lock(&data.lock);
}
...
spin_unlock(&data.lock);
This looks bizarre plus wait_event_interruptible() locks the wait
queue's lock anyway so there is a unlock+lock sequence where it could
be avoided.
To avoid those problems and benefit from wait queue's lock, a code
similar to the following should be used:
/* Waiting */
spin_lock(&data.wqh.lock);
...
ret = wait_event_interruptible_locked(data.wqh, (condition));
...
spin_unlock(&data.wqh.lock);
/* Waiting exclusively */
spin_lock(&data.whq.lock);
...
ret = wait_event_interruptible_exclusive_locked(data.whq, (condition));
...
spin_unlock(&data.whq.lock);
/* Waking up */
spin_lock(&data.wqh.lock);
...
wake_up_locked(&data.wqh);
...
spin_unlock(&data.wqh.lock);
When spin_lock_irq() is used matching versions of macros need to be
used (*_locked_irq()).
Signed-off-by: Michal Nazarewicz <m.nazarewicz@samsung.com>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Remove multi-urb write from the generic driver and simplify the
prepare_write_buffer prototype:
int (*prepare_write_buffer)(struct usb_serial_port *port,
void *dest, size_t size);
The default implementation simply fills dest with data from port write
fifo but drivers can override it if they need to process the outgoing
data (e.g. add headers).
Turn ftdi_sio into a generic fifo-based driver, which lowers CPU usage
significantly for small writes while retaining maximum throughput.
Signed-off-by: Johan Hovold <jhovold@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Reimplement fifo-based writes in the generic driver using a multiple
pre-allocated urb scheme.
In contrast to multi-urb writes, no allocations (of urbs or buffers) are
made during run-time and there is less pressure on the host stack
queues as currently only two urbs are used (implementation is generic
and can handle more than two urbs as well, though).
Initial tests using ftdi_sio show that the implementation achieves the
same (maximum) throughput at high baudrates as multi-urb writes. The CPU
usage is much lower than for multi-urb writes for small write requests
and only slightly higher for large (e.g. 2k) requests (due to extra copy
via fifo?).
Also outperforms multi-urb writes for small write requests on an
embedded arm-9 system, where multi-urb writes are CPU-bound at high
baudrates (perf reveals that a lot of time is spent in the host stack
enqueue function -- could perhaps be a bug as well).
Keeping the original write_urb, buffer and flag for now as there are
other drivers depending on them.
Signed-off-by: Johan Hovold <jhovold@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This patch (as1377) simplifies the code in usb_sg_init(), without
changing its functionality. It also removes a couple of unused fields
from the usb_sg_request structure.
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Change the type of the URB's 'sg' pointer from a usb_sg_request to
a scatterlist. This allows drivers to submit scatter-gather lists
without using the usb_sg_wait() interface. It has the added benefit
of removing the typecasts that were added as part of patch as1368 (and
slightly decreasing the number of pointer dereferences).
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Reviewed-by: Alan Stern <stern@rowland.harvard.edu>
Tested-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
The stronger type-checking would have prevented a bug I had.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Converting a pipe number to a struct usb_host_endpoint pointer is a little
messy. Introduce a new convenience function to hide the mess.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
The Pipe Usage descriptor is needed for USB Attached SCSI
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Now that URB_NO_SETUP_DMA_MAP is no longer in use, this patch (as1376)
removes all references to it.
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This patch (as1375) eliminates the usb_host_ss_ep_comp structure used
for storing a dynamically-allocated copy of the SuperSpeed endpoint
companion descriptor. The SuperSpeed descriptor is placed directly in
the usb_host_endpoint structure, alongside the standard endpoint
descriptor.
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This patch adds a sysfs entry (/sys/devices/platform/_UDC_/gadget/suspended) to
show the suspend state of an USB composite gadget.
Signed-off-by: Fabien Chouteau <fabien.chouteau@barco.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Bulk endpoint streams were added in the USB 3.0 specification. Streams
allow a device driver to overload a bulk endpoint so that multiple
transfers can be queued at once.
The device then decides which transfer it wants to work on first, and can
queue part of a transfer before it switches to a new stream. All this
switching is invisible to the device driver, which just gets a completion
for the URB. Drivers that use streams must be able to handle URBs
completing in a different order than they were submitted to the endpoint.
This requires adding new API to set up xHCI data structures to support
multiple queues ("stream rings") per endpoint. Drivers will allocate a
number of stream IDs before enqueueing URBs to the bulk endpoints of the
device, and free the stream IDs in their disconnect function. See
Documentation/usb/bulk-streams.txt for details.
The new mass storage device class, USB Attached SCSI Protocol (UASP), uses
these streams API.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Bulk endpoint streams were added in the USB 3.0 specification. Streams
allow a device driver to overload a bulk endpoint so that multiple
transfers can be queued at once.
Add a new field, stream_id, to struct urb so that USB 3.0 drivers can
specify which stream they want the URB to be queued to.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Allow the xHCI drivers (and any new USB 3.0 drivers) to parse the
SuperSpeed endpoint companion descriptor to find the maximum number of
bulk endpoint streams the endpoint supports. This is used to calculate
the maximum total number of streams the driver can allocate.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>