* 'devel' of master.kernel.org:/home/rmk/linux-2.6-arm: (416 commits)
ARM: DMA: add support for DMA debugging
ARM: PL011: add DMA burst threshold support for ST variants
ARM: PL011: Add support for transmit DMA
ARM: PL011: Ensure IRQs are disabled in UART interrupt handler
ARM: PL011: Separate hardware FIFO size from TTY FIFO size
ARM: PL011: Allow better handling of vendor data
ARM: PL011: Ensure error flags are clear at startup
ARM: PL011: include revision number in boot-time port printk
ARM: vexpress: add sched_clock() for Versatile Express
ARM i.MX53: Make MX53 EVK bootable
ARM i.MX53: Some bug fix about MX53 MSL code
ARM: 6607/1: sa1100: Update platform device registration
ARM: 6606/1: sa1100: Fix platform device registration
ARM i.MX51: rename IPU irqs
ARM i.MX51: Add ipu clock support
ARM: imx/mx27_3ds: Add PMIC support
ARM: DMA: Replace page_to_dma()/dma_to_page() with pfn_to_dma()/dma_to_pfn()
mx51: fix usb clock support
MX51: Add support for usb host 2
arch/arm/plat-mxc/ehci.c: fix errors/typos
...
This allows platforms to hook into the initialization early to setup
things like scheduler clocks, etc.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Rather than storing each machine init hook separately, store a
pointer to the machine description record and dereference this
instead. This pointer is only available while the init sections
are present, which is not a problem as we only use it from init
code.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Per subarch interrupt handler macros V3.
This patch breaks out code from the irq_handler macro
into arch_irq_handler and arch_irq_handler_default.
The macros are put in the header file "entry-macro-multi.S"
The arch_irq_handler_default macro is designed to be
used by irq_handler in entry-armv.S while arch_irq_handler
is suitable for per-subarch use.
Signed-off-by: Magnus Damm <damm@opensource.se>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Normally different ARM platform has different way to decode the IRQ
hardware status and demultiplex to the corresponding IRQ handler.
This is highly optimized by macro irq_handler in entry-armv.S, and
each machine defines their own macro to decode the IRQ number.
However, this prevents multiple machine classes to be built into a
single kernel.
By allowing each machine to specify thier own handler, and making
function pointer 'handle_arch_irq' to point to it at run time, this
can be solved. And introduce CONFIG_MULTI_IRQ_HANDLER to allow both
solutions to work.
Comparing with the highly optimized macro of irq_handler, the new
function must be written with care not to lose too much performance.
And the IPI stuff on SMP is expected to move to the provided arch
IRQ handler as well.
The assembly code to invoke handle_arch_irq is optimized by Russell
King.
Signed-off-by: Eric Miao <eric.miao@canonical.com>
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
If the irqsoff tracer is in use, stop tracing the interrupt disable
interval when returning to userspace. Tracing userspace execution time
as interrupts disabled time is not helpful for kernel performance
analysis purposes. Only do so if the irqsoff tracer is enabled, to
avoid overhead for lockdep, which doesn't care.
Signed-off-by: Todd Poynor <toddpoynor@google.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Provide common sched_clock() infrastructure for platforms to use to
create a 64-bit ns based sched_clock() implementation from a counter
running at a non-variable clock rate.
This implementation is based upon maintaining an epoch for the counter
and an epoch for the nanosecond time. When we desire a sched_clock()
time, we calculate the number of counter ticks since the last epoch
update, convert this to nanoseconds and add to the epoch nanoseconds.
We regularly refresh these epochs within the counter wrap interval.
We perform a similar calculation as above, and store the new epochs.
We read and write the epochs in such a way that sched_clock() can easily
(and locklessly) detect when an update is in progress, and repeat the
loading of these constants when they're known not to be stable. The
one caveat is that sched_clock() is not called in the middle of an
update. We achieve that by disabling IRQs.
Finally, if the clock rate is known at compile time, the counter to ns
conversion factors can be specified, allowing sched_clock() to be tightly
optimized. We ensure that these factors are correct by providing an
initialization function which performs a run-time check.
Acked-by: Peter Zijlstra <peterz@infradead.org>
Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Tested-by: Will Deacon <will.deacon@arm.com>
Tested-by: Mikael Pettersson <mikpe@it.uu.se>
Tested-by: Eric Miao <eric.y.miao@gmail.com>
Tested-by: Olof Johansson <olof@lixom.net>
Tested-by: Jamie Iles <jamie@jamieiles.com>
Reviewed-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
We have two places where we create identity mappings - one when we bring
secondary CPUs online, and one where we setup some mappings for soft-
reboot. Combine these two into a single implementation. Also collect
the identity mapping deletion function.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The MMU is always configured to read page tables from the L2 cache
so there's little point flushing them out of the L2 cache back to
RAM. Remove these flushes.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
When we soft-CPU hotplug a CPU, we reset the stack pointer and
jump back to start_secondary(). This allows us to restart as if
the CPU was actually reset.
However, we weren't resetting the frame pointer, which could cause
problems with backtracing. Reset the frame pointer to zero (which
means no parent frame) just like the early assembly code also does.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
smp.c is becoming too large, so split out the TLB maintainence
broadcasting into a separate smp_tlb.c file.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
When a CPU is hot unplugged, the generic tick code cleans up the
clock event device, but fails to call down to the device's set_mode
function to actually shut the device down.
To work around this, we've historically had a local_timer_stop()
callback out of the hotplug code. However, this adds needless
complexity when we have the clock event device itself available.
Explicitly call the clock event device's set_mode function with
CLOCK_EVT_MODE_UNUSED, so that the hardware can be cleanly shutdown
without any special external callbacks. When/if the generic code
is fixed, percpu_timer_stop() can be killed off.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
We used to print a bland error message which gave no clue as to the
failure when we failed to bring up a secondary CPU. Resolve this by
separating the two failure cases.
If boot_secondary() fails, we print a message indicating the returned
error code from boot_secondary():
"CPU%u: failed to boot: %d\n", cpu, ret.
However, if boot_secondary() succeeded, but the CPU did not appear to
mark itself online within the timeout, indicate that it failed to come
online:
"CPU%u: failed to come online\n", cpu
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* __fixup_smp_on_up has been modified with support for the
THUMB2_KERNEL case. For THUMB2_KERNEL only, fixups are split
into halfwords in case of misalignment, since we can't rely on
unaligned accesses working before turning the MMU on.
No attempt is made to optimise the aligned case, since the
number of fixups is typically small, and it seems best to keep
the code as simple as possible.
* Add a rotate in the fixup_smp code in order to support
CPU_BIG_ENDIAN, as suggested by Nicolas Pitre.
* Add an assembly-time sanity-check to ALT_UP() to ensure that
the content really is the right size (4 bytes).
(No check is done for ALT_SMP(). Possibly, this could be fixed
by splitting the two uses ot ALT_SMP() (ALT_SMP...SMP_UP versus
ALT_SMP...SMP_UP_B) into two macros. In the first case,
ALT_SMP needs to expand to >= 4 bytes, not == 4.)
* smp_mpidr.h (which implements ALT_SMP()/ALT_UP() manually due
to macro limitations) has not been modified: the affected
instruction (mov) has no 16-bit encoding, so the correct
instruction size is satisfied in this case.
* A "mode" parameter has been added to smp_dmb:
smp_dmb arm @ assumes 4-byte instructions (for ARM code, e.g. kuser)
smp_dmb @ uses W() to ensure 4-byte instructions for ALT_SMP()
This avoids assembly failures due to use of W() inside smp_dmb,
when assembling pure-ARM code in the vectors page.
There might be a better way to achieve this.
* Kconfig: make SMP_ON_UP depend on
(!THUMB2_KERNEL || !BIG_ENDIAN) i.e., THUMB2_KERNEL is now
supported, but only if !BIG_ENDIAN (The fixup code for Thumb-2
currently assumes little-endian order.)
Tested using a single generic realview kernel on:
ARM RealView PB-A8 (CONFIG_THUMB2_KERNEL={n,y})
ARM RealView PBX-A9 (SMP)
Signed-off-by: Dave Martin <dave.martin@linaro.org>
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Don't call idle_task_exit() with interrupts disabled, and ensure
that we have a memory barrier after interrupts are disabled but
before signalling that this CPU has shut down.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
We always need to wait for the dying CPU to reach a safe state before
taking it down, irrespective of the requirements of the platform.
Move the completion code into the ARM SMP hotplug code rather than
having each platform re-implement this.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
All platforms call trace_hardirqs_off() in their secondary startup code,
so move this into the core SMP code - it doesn't need to be in the
per-platform code.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>