o Some functions which should have been in init sections as they are called
only once. Put them in init sections. Otherwise MODPOST generates warning
as these functions are placed in .text and they end up accessing something
in init sections.
WARNING: vmlinux - Section mismatch: reference to .init.text:migration_init
from .text between 'do_pre_smp_initcalls' (at offset 0xc01000d1) and
'run_init_process'
Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Andi Kleen <ak@suse.de>
The calls made by parse_parms to other initialization code might enable
interrupts again way too early.
Having interrupts on this early can make systems PANIC when they initialize
the IRQ controllers (which happens later in the code). This patch detects
that irq's are enabled again, barfs about it and disables them again as a
safety net.
[akpm@osdl.org: cleanups]
Signed-off-by: Ard van Breemen <ard@telegraafnet.nl>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add a prototype for driver_init() in include/linux/device.h.
Also remove a static function of the same name in drivers/acpi/ibm_acpi.c to
ibm_acpi_driver_init() to fix the namespace collision.
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Acked-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
We should not initialize rootfs before all the core initializers have
run. So do it as a separate stage just before starting the regular
driver initializers.
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
As reported by Andy Whitcroft, at least the SLES9 initrd build process
depends on getting the kernel version from the kernel binary. It does
that by simply trawling the binary and looking for the signature of the
"linux_banner" string (the string "Linux version " to be exact. Which
is really broken in itself, but whatever..)
That got broken when the string was changed to allow /proc/version to
change the UTS release information dynamically, and "get_kernel_version"
thus returned "%s" (see commit a2ee8649ba:
"[PATCH] Fix linux banner utsname information").
This just restores "linux_banner" as a static string, which should fix
the version finding. And /proc/version simply uses a different string.
To avoid wasting even that miniscule amount of memory, the early boot
string should really be marked __initdata, but that just causes the same
bug in SLES9 to re-appear, since it will then find other occurrences of
"Linux version " first.
Cc: Andy Whitcroft <apw@shadowen.org>
Acked-by: Herbert Poetzl <herbert@13thfloor.at>
Cc: Andi Kleen <ak@suse.de>
Cc: Andrew Morton <akpm@osdl.org>
Cc: Steve Fox <drfickle@us.ibm.com>
Acked-by: Olaf Hering <olaf@aepfle.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add a per pid_namespace child-reaper. This is needed so processes are reaped
within the same pid space and do not spill over to the parent pid space. Its
also needed so containers preserve existing semantic that pid == 1 would reap
orphaned children.
This is based on Eric Biederman's patch: http://lkml.org/lkml/2006/2/6/285
Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
utsname information is shown in the linux banner, which also is used for
/proc/version (which can have different utsname values inside a uts
namespaces). this patch makes the varying data arguments and changes the
string to a format string, using those arguments.
Signed-off-by: Herbert Poetzl <herbert@13thfloor.at>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Keith says
Compiling 2.6.19-rc6 with gcc version 4.1.0 (SUSE Linux), wait_hpet_tick is
optimized away to a never ending loop and the kernel hangs on boot in timer
setup.
0000001a <wait_hpet_tick>:
1a: 55 push %ebp
1b: 89 e5 mov %esp,%ebp
1d: eb fe jmp 1d <wait_hpet_tick+0x3>
This is not a problem with gcc 3.3.5. Adding barrier() calls to
wait_hpet_tick does not help, making the variables volatile does.
And the consensus is that gcc-4.1.0 is busted. Suse went and shipped
gcc-4.1.0 so we cannot ban it. Add a warning.
Cc: Keith Owens <kaos@ocs.com.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Both lhype and Xen want to call the core of the x86 cpu detect code before
calling start_kernel.
(extracted from larger patch)
AK: folded in start_kernel header patch
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
This changes the dwarf2 unwinder to do a binary search for CIEs
instead of a linear work. The linker is unfortunately not
able to build a proper lookup table at link time, instead it creates
one at runtime as soon as the bootmem allocator is usable (so you'll continue
using the linear lookup for the first [hopefully] few calls).
The code should be ready to utilize a build-time created table once
a fixed linker becomes available.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Signed-off-by: Andi Kleen <ak@suse.de>
There are a few places in the kernel where the init task is signaled. The
ctrl+alt+del sequence is one them. It kills a task, usually init, using a
cached pid (cad_pid).
This patch replaces the pid_t by a struct pid to avoid pid wrap around
problem. The struct pid is initialized at boot time in init() and can be
modified through systctl with
/proc/sys/kernel/cad_pid
[ I haven't found any distro using it ? ]
It also introduces a small helper routine kill_cad_pid() which is used
where it seemed ok to use cad_pid instead of pid 1.
[akpm@osdl.org: cleanups, build fix]
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Resetting the devices during driver initialization can be a costly
operation in terms of time (especially scsi devices). This option can be
used by drivers to know that user forcibly wants the devices to be reset
during initialization.
This option can be useful while kernel is booting in unreliable
environment. For ex. during kdump boot where devices are in unknown
random state and BIOS execution has been skipped.
Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
We currently assume that boot parameters which are handled by
early_param() will not overlap boot parameters handled by __setup: if
they do, behaviour is dependent on link order, usually meaning __setup
will not get called.
ACPI wants to use early_param("pci"), and pci uses __setup("pci="), so
we modify the core to let them coexist: "pci=noacpi" will now get
passed to both.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andi Kleen <ak@suse.de>
Create a "taskstats" interface based on generic netlink (NETLINK_GENERIC
family), for getting statistics of tasks and thread groups during their
lifetime and when they exit. The interface is intended for use by multiple
accounting packages though it is being created in the context of delay
accounting.
This patch creates the interface without populating the fields of the data
that is sent to the user in response to a command or upon the exit of a task.
Each accounting package interested in using taskstats has to provide an
additional patch to add its stats to the common structure.
[akpm@osdl.org: cleanups, Kconfig fix]
Signed-off-by: Shailabh Nagar <nagar@us.ibm.com>
Signed-off-by: Balbir Singh <balbir@in.ibm.com>
Cc: Jes Sorensen <jes@sgi.com>
Cc: Peter Chubb <peterc@gelato.unsw.edu.au>
Cc: Erich Focht <efocht@ess.nec.de>
Cc: Levent Serinol <lserinol@gmail.com>
Cc: Jay Lan <jlan@engr.sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initialization code related to collection of per-task "delay" statistics which
measure how long it had to wait for cpu, sync block io, swapping etc. The
collection of statistics and the interface are in other patches. This patch
sets up the data structures and allows the statistics collection to be
disabled through a kernel boot parameter.
Signed-off-by: Shailabh Nagar <nagar@watson.ibm.com>
Signed-off-by: Balbir Singh <balbir@in.ibm.com>
Cc: Jes Sorensen <jes@sgi.com>
Cc: Peter Chubb <peterc@gelato.unsw.edu.au>
Cc: Erich Focht <efocht@ess.nec.de>
Cc: Levent Serinol <lserinol@gmail.com>
Cc: Jay Lan <jlan@engr.sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Teach special (recursive) locking code to the lock validator. Has no effect
on non-lockdep kernels.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Do 'make oldconfig' and accept all the defaults for new config options -
reboot into the kernel and if everything goes well it should boot up fine and
you should have /proc/lockdep and /proc/lockdep_stats files.
Typically if the lock validator finds some problem it will print out
voluminous debug output that begins with "BUG: ..." and which syslog output
can be used by kernel developers to figure out the precise locking scenario.
What does the lock validator do? It "observes" and maps all locking rules as
they occur dynamically (as triggered by the kernel's natural use of spinlocks,
rwlocks, mutexes and rwsems). Whenever the lock validator subsystem detects a
new locking scenario, it validates this new rule against the existing set of
rules. If this new rule is consistent with the existing set of rules then the
new rule is added transparently and the kernel continues as normal. If the
new rule could create a deadlock scenario then this condition is printed out.
When determining validity of locking, all possible "deadlock scenarios" are
considered: assuming arbitrary number of CPUs, arbitrary irq context and task
context constellations, running arbitrary combinations of all the existing
locking scenarios. In a typical system this means millions of separate
scenarios. This is why we call it a "locking correctness" validator - for all
rules that are observed the lock validator proves it with mathematical
certainty that a deadlock could not occur (assuming that the lock validator
implementation itself is correct and its internal data structures are not
corrupted by some other kernel subsystem). [see more details and conditionals
of this statement in include/linux/lockdep.h and
Documentation/lockdep-design.txt]
Furthermore, this "all possible scenarios" property of the validator also
enables the finding of complex, highly unlikely multi-CPU multi-context races
via single single-context rules, increasing the likelyhood of finding bugs
drastically. In practical terms: the lock validator already found a bug in
the upstream kernel that could only occur on systems with 3 or more CPUs, and
which needed 3 very unlikely code sequences to occur at once on the 3 CPUs.
That bug was found and reported on a single-CPU system (!). So in essence a
race will be found "piecemail-wise", triggering all the necessary components
for the race, without having to reproduce the race scenario itself! In its
short existence the lock validator found and reported many bugs before they
actually caused a real deadlock.
To further increase the efficiency of the validator, the mapping is not per
"lock instance", but per "lock-class". For example, all struct inode objects
in the kernel have inode->inotify_mutex. If there are 10,000 inodes cached,
then there are 10,000 lock objects. But ->inotify_mutex is a single "lock
type", and all locking activities that occur against ->inotify_mutex are
"unified" into this single lock-class. The advantage of the lock-class
approach is that all historical ->inotify_mutex uses are mapped into a single
(and as narrow as possible) set of locking rules - regardless of how many
different tasks or inode structures it took to build this set of rules. The
set of rules persist during the lifetime of the kernel.
To see the rough magnitude of checking that the lock validator does, here's a
portion of /proc/lockdep_stats, fresh after bootup:
lock-classes: 694 [max: 2048]
direct dependencies: 1598 [max: 8192]
indirect dependencies: 17896
all direct dependencies: 16206
dependency chains: 1910 [max: 8192]
in-hardirq chains: 17
in-softirq chains: 105
in-process chains: 1065
stack-trace entries: 38761 [max: 131072]
combined max dependencies: 2033928
hardirq-safe locks: 24
hardirq-unsafe locks: 176
softirq-safe locks: 53
softirq-unsafe locks: 137
irq-safe locks: 59
irq-unsafe locks: 176
The lock validator has observed 1598 actual single-thread locking patterns,
and has validated all possible 2033928 distinct locking scenarios.
More details about the design of the lock validator can be found in
Documentation/lockdep-design.txt, which can also found at:
http://redhat.com/~mingo/lockdep-patches/lockdep-design.txt
[bunk@stusta.de: cleanups]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Generic lock debugging:
- generalized lock debugging framework. For example, a bug in one lock
subsystem turns off debugging in all lock subsystems.
- got rid of the caller address passing (__IP__/__IP_DECL__/etc.) from
the mutex/rtmutex debugging code: it caused way too much prototype
hackery, and lockdep will give the same information anyway.
- ability to do silent tests
- check lock freeing in vfree too.
- more finegrained debugging options, to allow distributions to
turn off more expensive debugging features.
There's no separate 'held mutexes' list anymore - but there's a 'held locks'
stack within lockdep, which unifies deadlock detection across all lock
classes. (this is independent of the lockdep validation stuff - lockdep first
checks whether we are holding a lock already)
Here are the current debugging options:
CONFIG_DEBUG_MUTEXES=y
CONFIG_DEBUG_LOCK_ALLOC=y
which do:
config DEBUG_MUTEXES
bool "Mutex debugging, basic checks"
config DEBUG_LOCK_ALLOC
bool "Detect incorrect freeing of live mutexes"
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
We're not reay to take a timer interrupt until timekeeping_init() has run.
But time_init() will start the time interrupt and if it is called with
local interrupts enabled we'll immediately take an interrupt and die.
Fix that by running timekeeping_init() prior to time_init().
We don't know _why_ local interrupts got enabled on Jesse Brandeburg's
machine. That's a separate as-yet-unsolved problem. THe patch adds a little
bit of debugging to detect that.
This whole requirement that local interrupts be held off during early boot
keeps on biting us.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Jesse Brandeburg <jesse.brandeburg@gmail.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>