When switching a RFCOMM socket to a TTY, the remote modem status might
be needed later. Currently it is lost since the original configuration
is done via the socket interface. So store the modem status and reply
it when the socket has been converted to a TTY.
Signed-off-by: Denis Kenzior <denis.kenzior@trolltech.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Enable the common timestamp functionality that the network subsystem
provides for L2CAP, RFCOMM and SCO sockets. It is possible to either
use SO_TIMESTAMP or the IOCTLs to retrieve the timestamp of the
current packet.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
With the Simple Pairing support, the authentication requirements are
an explicit setting during the bonding process. Track and enforce the
requirements and allow higher layers like L2CAP and RFCOMM to increase
them if needed.
This patch introduces a new IOCTL that allows to query the current
authentication requirements. It is also possible to detect Simple
Pairing support in the kernel this way.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
The Bluetooth technology introduces new features on a regular basis
and for some of them it is important that the hardware on both sides
support them. For features like Simple Pairing it is important that
the host stacks on both sides have switched this feature on. To make
valid decisions, a config stage during ACL link establishment has been
introduced that retrieves remote features and if needed also the remote
extended features (known as remote host features) before signalling
this link as connected.
This change introduces full reference counting of incoming and outgoing
ACL links and the Bluetooth core will disconnect both if no owner of it
is present. To better handle interoperability during the pairing phase
the disconnect timeout for incoming connections has been increased to
10 seconds. This is five times more than for outgoing connections.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
The Simple Pairing process can only be used if both sides have the
support enabled in the host stack. The current Bluetooth specification
has three ways to detect this support.
If an Extended Inquiry Result has been sent during inquiry then it
is safe to assume that Simple Pairing is enabled. It is not allowed
to enable Extended Inquiry without Simple Pairing. During the remote
name request phase a notification with the remote host supported
features will be sent to indicate Simple Pairing support. Also the
second page of the remote extended features can indicate support for
Simple Pairing.
For all three cases the value of remote Simple Pairing mode is stored
in the inquiry cache for later use.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
The Simple Pairing feature is optional and needs to be enabled by the
host stack first. The Linux kernel relies on the Bluetooth daemon to
either enable or disable it, but at any time it needs to know the
current state of the Simple Pairing mode. So track any changes made
by external entities and store the current mode in the HCI device
structure.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
During the Simple Pairing process the HCI disconnect timer must be
disabled. The way to do this is by holding a reference count of the
HCI connection. The Simple Pairing process on both sides starts with
an IO Capabilities Request and ends with Simple Pairing Complete.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
The Bluetooth specification supports the default link policy settings
on a per host controller basis. For every new connection the link
manager would then use these settings. It is better to use this instead
of bothering the controller on every connection setup to overwrite the
default settings.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
The connection packet type can be changed after the connection has been
established and thus needs to be properly tracked to ensure that the
host stack has always correct and valid information about it.
On incoming connections the Bluetooth core switches the supported packet
types to the configured list for this controller. However the usefulness
of this feature has been questioned a lot. The general consent is that
every Bluetooth host stack should enable as many packet types as the
hardware actually supports and leave the decision to the link manager
software running on the Bluetooth chip.
When running on Bluetooth 2.0 or later hardware, don't change the packet
type for incoming connections anymore. This hardware likely supports
Enhanced Data Rate and thus leave it completely up to the link manager
to pick the best packet type.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
The Bluetooth specification allows to enable or disable the encryption
of an ACL link at any time by either the peer or the remote device. If
a L2CAP or RFCOMM connection requested an encrypted link, they will now
disconnect that link if the encryption gets disabled. Higher protocols
that don't care about encryption (like SDP) are not affected.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Recent tests with various Bluetooth headsets have shown that some of
them don't enforce authentication and encryption when connecting. All
of them leave it up to the host stack to enforce it. Non of them should
allow unencrypted connections, but that is how it is. So in case the
link mode settings require authentication and/or encryption it will now
also be enforced on outgoing RFCOMM connections. Previously this was
only done for incoming connections.
This support has a small drawback from a protocol level point of view
since the host stack can't really tell with 100% certainty if a remote
side is already authenticated or not. So if both sides are configured
to enforce authentication it will be requested twice. Most Bluetooth
chips are caching this information and thus no extra authentication
procedure has to be triggered over-the-air, but it can happen.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
hci_sock_cleanup() always returns 0 and its return value isn't used
anywhere in the code.
Compile-tested with 'make allyesconfig && make net/bluetooth/bluetooth.ko'
Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Marcel Holtmann <marcel@holtmann.org>
X86_32 was the last user of the FASTCALL macro, now that it
uses regparm(3) by default, this macro expands to nothing.
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
With the Bluetooth 1.2 specification the Extended SCO feature for
better audio connections was introduced. So far the Bluetooth core
wasn't able to handle any eSCO connections correctly. This patch
adds simple eSCO support while keeping backward compatibility with
older devices.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
In case the remote entity tries to negogiate retransmission or flow
control mode, reject it and fall back to basic mode.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
The Bluetooth 1.2 specification introduced a specific features mask
value to interoperate with newer versions of the specification. So far
this piece of information was never needed, but future extensions will
rely on it. This patch adds a generic way to retrieve this information
only once per connection setup.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
After the change to the L2CAP configuration parameter handling the
global conf_mtu variable is no longer needed and so remove it.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
The Bluetooth HCI commands are divided into logical OGF groups for
easier identification of their purposes. While this still makes sense
for the written specification, its makes the code only more complex
and harder to read. So instead of using separate OGF and OCF values
to identify the commands, use a common 16-bit opcode that combines
both values. As a side effect this also reduces the complexity of
OGF and OCF calculations during command header parsing.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
To better support and handle eSCO links in the future a bunch of
constants needs to be added and some basic routines need to be
updated. This is the initial step.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
This patch changes the RFCOMM TTY release process so that the TTY is kept
on the list until it is really freed. A new device flag is used to keep
track of released TTYs.
Signed-off-by: Ville Tervo <ville.tervo@nokia.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Most drivers must handle fragmented HCI data packets and events. This
patch adds a generic function for their reassembly to the Bluetooth
core layer and thus allows to shrink the complexity of the drivers.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
The L2CAP configuration parameter handling was missing the support
for rejecting unknown options. The capability to reject unknown
options is mandatory since the Bluetooth 1.2 specification. This
patch implements its and also simplifies the parameter parsing.
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
For consistency with other skb data accessors, reducing the number of direct
accesses to skb->data.
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>