We all should be using (and improving) the schedutil governor now. Get
rid of the non-upstream governor.
Tested on Hikey.
Change-Id: Ic660756536e5da51952738c3c18b94e31f58cd57
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
commit 425fffd886bae3d127a08fa6a17f2e31e24ed7ff upstream.
Currently, inputting the following command will succeed but actually the
value will be truncated:
# echo 0x12ffffffff > /proc/sys/net/ipv4/tcp_notsent_lowat
This is not friendly to the user, so instead, we should report error
when the value is larger than UINT_MAX.
Fixes: e7d316a02f68 ("sysctl: handle error writing UINT_MAX to u32 fields")
Signed-off-by: Liping Zhang <zlpnobody@gmail.com>
Cc: Subash Abhinov Kasiviswanathan <subashab@codeaurora.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5380e5644afbba9e3d229c36771134976f05c91e upstream.
I saw some very confusing sysctl output on my system:
# cat /proc/sys/net/core/xfrm_aevent_rseqth
-2
# cat /proc/sys/net/core/xfrm_aevent_etime
-10
# cat /proc/sys/net/ipv4/tcp_notsent_lowat
-4294967295
Because we forget to set the *negp flag in proc_douintvec, so it will
become a garbage value.
Since the value related to proc_douintvec is always an unsigned integer,
so we can set *negp to false explictily to fix this issue.
Fixes: e7d316a02f68 ("sysctl: handle error writing UINT_MAX to u32 fields")
Signed-off-by: Liping Zhang <zlpnobody@gmail.com>
Cc: Subash Abhinov Kasiviswanathan <subashab@codeaurora.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
With the new wakeup approach this sysctl is not necessary any more.
Change-Id: I52114b3c918791f6a4f9f30f50002919ccbc1a9c
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
(cherry picked from commit 885c0d503bcdf0ef4e9b46822496f16b20aa3bbd)
Signed-off-by: Chris Redpath <chris.redpath@arm.com>
commit d29216842a85c7970c536108e093963f02714498 upstream.
CAI Qian <caiqian@redhat.com> pointed out that the semantics
of shared subtrees make it possible to create an exponentially
increasing number of mounts in a mount namespace.
mkdir /tmp/1 /tmp/2
mount --make-rshared /
for i in $(seq 1 20) ; do mount --bind /tmp/1 /tmp/2 ; done
Will create create 2^20 or 1048576 mounts, which is a practical problem
as some people have managed to hit this by accident.
As such CVE-2016-6213 was assigned.
Ian Kent <raven@themaw.net> described the situation for autofs users
as follows:
> The number of mounts for direct mount maps is usually not very large because of
> the way they are implemented, large direct mount maps can have performance
> problems. There can be anywhere from a few (likely case a few hundred) to less
> than 10000, plus mounts that have been triggered and not yet expired.
>
> Indirect mounts have one autofs mount at the root plus the number of mounts that
> have been triggered and not yet expired.
>
> The number of autofs indirect map entries can range from a few to the common
> case of several thousand and in rare cases up to between 30000 and 50000. I've
> not heard of people with maps larger than 50000 entries.
>
> The larger the number of map entries the greater the possibility for a large
> number of active mounts so it's not hard to expect cases of a 1000 or somewhat
> more active mounts.
So I am setting the default number of mounts allowed per mount
namespace at 100,000. This is more than enough for any use case I
know of, but small enough to quickly stop an exponential increase
in mounts. Which should be perfect to catch misconfigurations and
malfunctioning programs.
For anyone who needs a higher limit this can be changed by writing
to the new /proc/sys/fs/mount-max sysctl.
Tested-by: CAI Qian <caiqian@redhat.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
[bwh: Backported to 4.4: adjust context]
Signed-off-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ff9f8a7cf935468a94d9927c68b00daae701667e upstream.
We perform the conversion between kernel jiffies and ms only when
exporting kernel value to user space.
We need to do the opposite operation when value is written by user.
Only matters when HZ != 1000
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e7d316a02f683864a12389f8808570e37fb90aa3 upstream.
We have scripts which write to certain fields on 3.18 kernels but this
seems to be failing on 4.4 kernels. An entry which we write to here is
xfrm_aevent_rseqth which is u32.
echo 4294967295 > /proc/sys/net/core/xfrm_aevent_rseqth
Commit 230633d109 ("kernel/sysctl.c: detect overflows when converting
to int") prevented writing to sysctl entries when integer overflow
occurs. However, this does not apply to unsigned integers.
Heinrich suggested that we introduce a new option to handle 64 bit
limits and set min as 0 and max as UINT_MAX. This might not work as it
leads to issues similar to __do_proc_doulongvec_minmax. Alternatively,
we would need to change the datatype of the entry to 64 bit.
static int __do_proc_doulongvec_minmax(void *data, struct ctl_table
{
i = (unsigned long *) data; //This cast is causing to read beyond the size of data (u32)
vleft = table->maxlen / sizeof(unsigned long); //vleft is 0 because maxlen is sizeof(u32) which is lesser than sizeof(unsigned long) on x86_64.
Introduce a new proc handler proc_douintvec. Individual proc entries
will need to be updated to use the new handler.
[akpm@linux-foundation.org: coding-style fixes]
Fixes: 230633d109 ("kernel/sysctl.c:detect overflows when converting to int")
Link: http://lkml.kernel.org/r/1471479806-5252-1-git-send-email-subashab@codeaurora.org
Signed-off-by: Subash Abhinov Kasiviswanathan <subashab@codeaurora.org>
Cc: Heinrich Schuchardt <xypron.glpk@gmx.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
use a window based view of time in order to track task
demand and CPU utilization in the scheduler.
Window Assisted Load Tracking (WALT) implementation credits:
Srivatsa Vaddagiri, Steve Muckle, Syed Rameez Mustafa, Joonwoo Park,
Pavan Kumar Kondeti, Olav Haugan
2016-03-06: Integration with EAS/refactoring by Vikram Mulukutla
and Todd Kjos
Change-Id: I21408236836625d4e7d7de1843d20ed5ff36c708
Includes fixes for issues:
eas/walt: Use walt_ktime_clock() instead of ktime_get_ns() to avoid a
race resulting in watchdog resets
BUG: 29353986
Change-Id: Ic1820e22a136f7c7ebd6f42e15f14d470f6bbbdb
Handle walt accounting anomoly during resume
During resume, there is a corner case where on wakeup, a task's
prev_runnable_sum can go negative. This is a workaround that
fixes the condition and warns (instead of crashing).
BUG: 29464099
Change-Id: I173e7874324b31a3584435530281708145773508
Signed-off-by: Todd Kjos <tkjos@google.com>
Signed-off-by: Srinath Sridharan <srinathsr@google.com>
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
[jstultz: fwdported to 4.4]
Signed-off-by: John Stultz <john.stultz@linaro.org>
The choice of initial task load upon fork has a large influence
on CPU and OPP selection when scheduler-driven DVFS is in use.
Make this tuneable by adding a new sysctl "sched_initial_task_util".
If the sched governor is not used, the default remains at SCHED_LOAD_SCALE
Otherwise, the value from the sysctl is used. This defaults to 0.
Signed-off-by: "Todd Kjos <tkjos@google.com>"
EAS assumes that clusters with smaller capacity cores are more
energy-efficient. This may not be true on non-big-little devices,
so EAS can make incorrect cluster selections when finding a CPU
to wake. The "sched_is_big_little" hint can be used to cause a
cpu-based selection instead of cluster-based selection.
This change incorporates the addition of the sync hint enable patch
EAS did not honour synchronous wakeup hints, a new sysctl is
created to ask EAS to use this information when selecting a CPU.
The control is called "sched_sync_hint_enable".
Also contains:
EAS: sched/fair: for SMP bias toward idle core with capacity
For SMP devices, on wakeup bias towards idle cores that have capacity
vs busy devices that need a higher OPP
eas: favor idle cpus for boosted tasks
BUG: 29533997
BUG: 29512132
Change-Id: I0cc9a1b1b88fb52916f18bf2d25715bdc3634f9c
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Srinath Sridharan <srinathsr@google.com>
eas/sched/fair: Favoring busy cpus with low OPPs
BUG: 29533997
BUG: 29512132
Change-Id: I9305b3239698d64278db715a2e277ea0bb4ece79
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Introduce a new sysctl for this option, 'sched_cstate_aware'.
When this is enabled, select_idle_sibling in CFS is modified to
choose the idle CPU in the sibling group which has the lowest
idle state index - idle state indexes are assumed to increase
as sleep depth and hence wakeup latency increase. In this way,
we attempt to minimise wakeup latency when an idle CPU is
required.
Signed-off-by: Srinath Sridharan <srinathsr@google.com>
Includes:
sched: EAS: fix select_idle_sibling
when sysctl_sched_cstate_aware is enabled, best_idle cpu will not be chosen
in the original flow because it will goto done directly
Bug: 30107557
Change-Id: Ie09c2e3960cafbb976f8d472747faefab3b4d6ac
Signed-off-by: martin_liu <martin_liu@htc.com>
To support task performance boosting, the usage of a single knob has the
advantage to be a simple solution, both from the implementation and the
usability standpoint. However, on a real system it can be difficult to
identify a single value for the knob which fits the needs of multiple
different tasks. For example, some kernel threads and/or user-space
background services should be better managed the "standard" way while we
still want to be able to boost the performance of specific workloads.
In order to improve the flexibility of the task boosting mechanism this
patch is the first of a small series which extends the previous
implementation to introduce a "per task group" support.
This first patch introduces just the basic CGroups support, a new
"schedtune" CGroups controller is added which allows to configure
different boost value for different groups of tasks.
To keep the implementation simple but still effective for a boosting
strategy, the new controller:
1. allows only a two layer hierarchy
2. supports only a limited number of boost groups
A two layer hierarchy allows to place each task either:
a) in the root control group
thus being subject to a system-wide boosting value
b) in a child of the root group
thus being subject to the specific boost value defined by that
"boost group"
The limited number of "boost groups" supported is mainly motivated by
the observation that in a real system it could be useful to have only
few classes of tasks which deserve different treatment.
For example, background vs foreground or interactive vs low-priority.
As an additional benefit, a limited number of boost groups allows also
to have a simpler implementation especially for the code required to
compute the boost value for CPUs which have runnable tasks belonging to
different boost groups.
cc: Tejun Heo <tj@kernel.org>
cc: Li Zefan <lizefan@huawei.com>
cc: Johannes Weiner <hannes@cmpxchg.org>
cc: Ingo Molnar <mingo@redhat.com>
cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
The current (CFS) scheduler implementation does not allow "to boost"
tasks performance by running them at a higher OPP compared to the
minimum required to meet their workload demands.
To support tasks performance boosting the scheduler should provide a
"knob" which allows to tune how much the system is going to be optimised
for energy efficiency vs performance.
This patch is the first of a series which provides a simple interface to
define a tuning knob. One system-wide "boost" tunable is exposed via:
/proc/sys/kernel/sched_cfs_boost
which can be configured in the range [0..100], to define a percentage
where:
- 0% boost requires to operate in "standard" mode by scheduling
tasks at the minimum capacities required by the workload demand
- 100% boost requires to push at maximum the task performances,
"regardless" of the incurred energy consumption
A boost value in between these two boundaries is used to bias the
power/performance trade-off, the higher the boost value the more the
scheduler is biased toward performance boosting instead of energy
efficiency.
cc: Ingo Molnar <mingo@redhat.com>
cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com>
commit 759c01142a5d0f364a462346168a56de28a80f52 upstream.
On no-so-small systems, it is possible for a single process to cause an
OOM condition by filling large pipes with data that are never read. A
typical process filling 4000 pipes with 1 MB of data will use 4 GB of
memory. On small systems it may be tricky to set the pipe max size to
prevent this from happening.
This patch makes it possible to enforce a per-user soft limit above
which new pipes will be limited to a single page, effectively limiting
them to 4 kB each, as well as a hard limit above which no new pipes may
be created for this user. This has the effect of protecting the system
against memory abuse without hurting other users, and still allowing
pipes to work correctly though with less data at once.
The limit are controlled by two new sysctls : pipe-user-pages-soft, and
pipe-user-pages-hard. Both may be disabled by setting them to zero. The
default soft limit allows the default number of FDs per process (1024)
to create pipes of the default size (64kB), thus reaching a limit of 64MB
before starting to create only smaller pipes. With 256 processes limited
to 1024 FDs each, this results in 1024*64kB + (256*1024 - 1024) * 4kB =
1084 MB of memory allocated for a user. The hard limit is disabled by
default to avoid breaking existing applications that make intensive use
of pipes (eg: for splicing).
Reported-by: socketpair@gmail.com
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Mitigates: CVE-2013-4312 (Linux 2.0+)
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Willy Tarreau <w@1wt.eu>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Moritz Muehlenhoff <moritz@wikimedia.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
(cherry picked from commit https://lkml.org/lkml/2015/12/21/337)
ASLR only uses as few as 8 bits to generate the random offset for the
mmap base address on 32 bit architectures. This value was chosen to
prevent a poorly chosen value from dividing the address space in such
a way as to prevent large allocations. This may not be an issue on all
platforms. Allow the specification of a minimum number of bits so that
platforms desiring greater ASLR protection may determine where to place
the trade-off.
Bug: 24047224
Signed-off-by: Daniel Cashman <dcashman@android.com>
Signed-off-by: Daniel Cashman <dcashman@google.com>
Change-Id: Ibf9ed3d4390e9686f5cc34f605d509a20d40e6c2
Add a userspace visible knob to tell the VM to keep an extra amount
of memory free, by increasing the gap between each zone's min and
low watermarks.
This is useful for realtime applications that call system
calls and have a bound on the number of allocations that happen
in any short time period. In this application, extra_free_kbytes
would be left at an amount equal to or larger than than the
maximum number of allocations that happen in any burst.
It may also be useful to reduce the memory use of virtual
machines (temporarily?), in a way that does not cause memory
fragmentation like ballooning does.
[ccross]
Revived for use on old kernels where no other solution exists.
The tunable will be removed on kernels that do better at avoiding
direct reclaim.
Change-Id: I765a42be8e964bfd3e2886d1ca85a29d60c3bb3e
Signed-off-by: Rik van Riel<riel@redhat.com>
Signed-off-by: Colin Cross <ccross@android.com>