Commit Graph

68 Commits

Author SHA1 Message Date
Eric B Munson
b0f205c2a3 mm: mlock: add mlock flags to enable VM_LOCKONFAULT usage
The previous patch introduced a flag that specified pages in a VMA should
be placed on the unevictable LRU, but they should not be made present when
the area is created.  This patch adds the ability to set this state via
the new mlock system calls.

We add MLOCK_ONFAULT for mlock2 and MCL_ONFAULT for mlockall.
MLOCK_ONFAULT will set the VM_LOCKONFAULT modifier for VM_LOCKED.
MCL_ONFAULT should be used as a modifier to the two other mlockall flags.
When used with MCL_CURRENT, all current mappings will be marked with
VM_LOCKED | VM_LOCKONFAULT.  When used with MCL_FUTURE, the mm->def_flags
will be marked with VM_LOCKED | VM_LOCKONFAULT.  When used with both
MCL_CURRENT and MCL_FUTURE, all current mappings and mm->def_flags will be
marked with VM_LOCKED | VM_LOCKONFAULT.

Prior to this patch, mlockall() will unconditionally clear the
mm->def_flags any time it is called without MCL_FUTURE.  This behavior is
maintained after adding MCL_ONFAULT.  If a call to mlockall(MCL_FUTURE) is
followed by mlockall(MCL_CURRENT), the mm->def_flags will be cleared and
new VMAs will be unlocked.  This remains true with or without MCL_ONFAULT
in either mlockall() invocation.

munlock() will unconditionally clear both vma flags.  munlockall()
unconditionally clears for VMA flags on all VMAs and in the mm->def_flags
field.

Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Eric B Munson
a8ca5d0ecb mm: mlock: add new mlock system call
With the refactored mlock code, introduce a new system call for mlock.
The new call will allow the user to specify what lock states are being
added.  mlock2 is trivial at the moment, but a follow on patch will add a
new mlock state making it useful.

Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Manjeet Pawar
c9692657c0 arm64: Fix MINSIGSTKSZ and SIGSTKSZ
MINSIGSTKSZ and SIGSTKSZ for ARM64 are not correctly set in latest kernel.
This patch fixes this issue.

This issue is reported in LTP (testcase: sigaltstack02.c).
Testcase failed when sigaltstack() called with stack size "MINSIGSTKSZ - 1"
Since in Glibc-2.22, MINSIGSTKSZ is set to 5120 but in kernel
it is set to 2048 so testcase gets failed.

Testcase Output:
sigaltstack02 1  TPASS  :  stgaltstack() fails, Invalid Flag value,errno:22
sigaltstack02 2  TFAIL  :  sigaltstack() returned 0, expected -1,errno:12

Reported Issue in Glibc Bugzilla:
Bugfix in Glibc-2.22: [Bug 16850]
https://sourceware.org/bugzilla/show_bug.cgi?id=16850

Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Akhilesh Kumar <akhilesh.k@samsung.com>
Signed-off-by: Manjeet Pawar <manjeet.p@samsung.com>
Signed-off-by: Rohit Thapliyal <r.thapliyal@samsung.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-10-12 17:40:12 +01:00
Dr. David Alan Gilbert
09f7298100 userfaultfd: register uapi generic syscall (aarch64)
Add the userfaultfd syscalls to uapi asm-generic, it was tested with
postcopy live migration on aarch64 with both 4k and 64k pagesize
kernels.

Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Thierry Reding <treding@nvidia.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-22 15:09:53 -07:00
Mathieu Desnoyers
5b25b13ab0 sys_membarrier(): system-wide memory barrier (generic, x86)
Here is an implementation of a new system call, sys_membarrier(), which
executes a memory barrier on all threads running on the system.  It is
implemented by calling synchronize_sched().  It can be used to
distribute the cost of user-space memory barriers asymmetrically by
transforming pairs of memory barriers into pairs consisting of
sys_membarrier() and a compiler barrier.  For synchronization primitives
that distinguish between read-side and write-side (e.g.  userspace RCU
[1], rwlocks), the read-side can be accelerated significantly by moving
the bulk of the memory barrier overhead to the write-side.

The existing applications of which I am aware that would be improved by
this system call are as follows:

* Through Userspace RCU library (http://urcu.so)
  - DNS server (Knot DNS) https://www.knot-dns.cz/
  - Network sniffer (http://netsniff-ng.org/)
  - Distributed object storage (https://sheepdog.github.io/sheepdog/)
  - User-space tracing (http://lttng.org)
  - Network storage system (https://www.gluster.org/)
  - Virtual routers (https://events.linuxfoundation.org/sites/events/files/slides/DPDK_RCU_0MQ.pdf)
  - Financial software (https://lkml.org/lkml/2015/3/23/189)

Those projects use RCU in userspace to increase read-side speed and
scalability compared to locking.  Especially in the case of RCU used by
libraries, sys_membarrier can speed up the read-side by moving the bulk of
the memory barrier cost to synchronize_rcu().

* Direct users of sys_membarrier
  - core dotnet garbage collector (https://github.com/dotnet/coreclr/issues/198)

Microsoft core dotnet GC developers are planning to use the mprotect()
side-effect of issuing memory barriers through IPIs as a way to implement
Windows FlushProcessWriteBuffers() on Linux.  They are referring to
sys_membarrier in their github thread, specifically stating that
sys_membarrier() is what they are looking for.

To explain the benefit of this scheme, let's introduce two example threads:

Thread A (non-frequent, e.g. executing liburcu synchronize_rcu())
Thread B (frequent, e.g. executing liburcu
rcu_read_lock()/rcu_read_unlock())

In a scheme where all smp_mb() in thread A are ordering memory accesses
with respect to smp_mb() present in Thread B, we can change each
smp_mb() within Thread A into calls to sys_membarrier() and each
smp_mb() within Thread B into compiler barriers "barrier()".

Before the change, we had, for each smp_mb() pairs:

Thread A                    Thread B
previous mem accesses       previous mem accesses
smp_mb()                    smp_mb()
following mem accesses      following mem accesses

After the change, these pairs become:

Thread A                    Thread B
prev mem accesses           prev mem accesses
sys_membarrier()            barrier()
follow mem accesses         follow mem accesses

As we can see, there are two possible scenarios: either Thread B memory
accesses do not happen concurrently with Thread A accesses (1), or they
do (2).

1) Non-concurrent Thread A vs Thread B accesses:

Thread A                    Thread B
prev mem accesses
sys_membarrier()
follow mem accesses
                            prev mem accesses
                            barrier()
                            follow mem accesses

In this case, thread B accesses will be weakly ordered. This is OK,
because at that point, thread A is not particularly interested in
ordering them with respect to its own accesses.

2) Concurrent Thread A vs Thread B accesses

Thread A                    Thread B
prev mem accesses           prev mem accesses
sys_membarrier()            barrier()
follow mem accesses         follow mem accesses

In this case, thread B accesses, which are ensured to be in program
order thanks to the compiler barrier, will be "upgraded" to full
smp_mb() by synchronize_sched().

* Benchmarks

On Intel Xeon E5405 (8 cores)
(one thread is calling sys_membarrier, the other 7 threads are busy
looping)

1000 non-expedited sys_membarrier calls in 33s =3D 33 milliseconds/call.

* User-space user of this system call: Userspace RCU library

Both the signal-based and the sys_membarrier userspace RCU schemes
permit us to remove the memory barrier from the userspace RCU
rcu_read_lock() and rcu_read_unlock() primitives, thus significantly
accelerating them. These memory barriers are replaced by compiler
barriers on the read-side, and all matching memory barriers on the
write-side are turned into an invocation of a memory barrier on all
active threads in the process. By letting the kernel perform this
synchronization rather than dumbly sending a signal to every process
threads (as we currently do), we diminish the number of unnecessary wake
ups and only issue the memory barriers on active threads. Non-running
threads do not need to execute such barrier anyway, because these are
implied by the scheduler context switches.

Results in liburcu:

Operations in 10s, 6 readers, 2 writers:

memory barriers in reader:    1701557485 reads, 2202847 writes
signal-based scheme:          9830061167 reads,    6700 writes
sys_membarrier:               9952759104 reads,     425 writes
sys_membarrier (dyn. check):  7970328887 reads,     425 writes

The dynamic sys_membarrier availability check adds some overhead to
the read-side compared to the signal-based scheme, but besides that,
sys_membarrier slightly outperforms the signal-based scheme. However,
this non-expedited sys_membarrier implementation has a much slower grace
period than signal and memory barrier schemes.

Besides diminishing the number of wake-ups, one major advantage of the
membarrier system call over the signal-based scheme is that it does not
need to reserve a signal. This plays much more nicely with libraries,
and with processes injected into for tracing purposes, for which we
cannot expect that signals will be unused by the application.

An expedited version of this system call can be added later on to speed
up the grace period. Its implementation will likely depend on reading
the cpu_curr()->mm without holding each CPU's rq lock.

This patch adds the system call to x86 and to asm-generic.

[1] http://urcu.so

membarrier(2) man page:

MEMBARRIER(2)              Linux Programmer's Manual             MEMBARRIER(2)

NAME
       membarrier - issue memory barriers on a set of threads

SYNOPSIS
       #include <linux/membarrier.h>

       int membarrier(int cmd, int flags);

DESCRIPTION
       The cmd argument is one of the following:

       MEMBARRIER_CMD_QUERY
              Query  the  set  of  supported commands. It returns a bitmask of
              supported commands.

       MEMBARRIER_CMD_SHARED
              Execute a memory barrier on all threads running on  the  system.
              Upon  return from system call, the caller thread is ensured that
              all running threads have passed through a state where all memory
              accesses  to  user-space  addresses  match program order between
              entry to and return from the system  call  (non-running  threads
              are de facto in such a state). This covers threads from all pro=E2=80=90
              cesses running on the system.  This command returns 0.

       The flags argument needs to be 0. For future extensions.

       All memory accesses performed  in  program  order  from  each  targeted
       thread is guaranteed to be ordered with respect to sys_membarrier(). If
       we use the semantic "barrier()" to represent a compiler barrier forcing
       memory  accesses  to  be performed in program order across the barrier,
       and smp_mb() to represent explicit memory barriers forcing full  memory
       ordering  across  the barrier, we have the following ordering table for
       each pair of barrier(), sys_membarrier() and smp_mb():

       The pair ordering is detailed as (O: ordered, X: not ordered):

                              barrier()   smp_mb() sys_membarrier()
              barrier()          X           X            O
              smp_mb()           X           O            O
              sys_membarrier()   O           O            O

RETURN VALUE
       On success, these system calls return zero.  On error, -1 is  returned,
       and errno is set appropriately. For a given command, with flags
       argument set to 0, this system call is guaranteed to always return the
       same value until reboot.

ERRORS
       ENOSYS System call is not implemented.

       EINVAL Invalid arguments.

Linux                             2015-04-15                     MEMBARRIER(2)

Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Nicholas Miell <nmiell@comcast.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Stephen Hemminger <stephen@networkplumber.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Pranith Kumar <bobby.prani@gmail.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-11 15:21:34 -07:00
Andy Lutomirski
e15f431fe2 errno.h: Improve ENOSYS's comment
ENOSYS is the mechanism used by user code to detect whether the running
kernel implements a given system call.  It should not be returned by
anything except an unimplemented system call.

Unfortunately, it is rather frequently used in the kernel to indicate that
various new functions of existing system calls are not implemented.  This
should be discouraged.

Improve the comment in errno.h to help clarify ENOSYS's purpose.

Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-17 09:03:58 -04:00
David Drysdale
75069f2b5b vfs: renumber FMODE_NONOTIFY and add to uniqueness check
Fix clashing values for O_PATH and FMODE_NONOTIFY on sparc.  The
clashing O_PATH value was added in commit 5229645bdc ("vfs: add
nonconflicting values for O_PATH") but this can't be changed as it is
user-visible.

FMODE_NONOTIFY is only used internally in the kernel, but it is in the
same numbering space as the other O_* flags, as indicated by the comment
at the top of include/uapi/asm-generic/fcntl.h (and its use in
fs/notify/fanotify/fanotify_user.c).  So renumber it to avoid the clash.

All of this has happened before (commit 12ed2e36c9: "fanotify:
FMODE_NONOTIFY and __O_SYNC in sparc conflict"), and all of this will
happen again -- so update the uniqueness check in fcntl_init() to
include __FMODE_NONOTIFY.

Signed-off-by: David Drysdale <drysdale@google.com>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Jan Kara <jack@suse.cz>
Cc: Heinrich Schuchardt <xypron.glpk@gmx.de>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Eric Paris <eparis@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-08 15:10:52 -08:00
David Drysdale
51f39a1f0c syscalls: implement execveat() system call
This patchset adds execveat(2) for x86, and is derived from Meredydd
Luff's patch from Sept 2012 (https://lkml.org/lkml/2012/9/11/528).

The primary aim of adding an execveat syscall is to allow an
implementation of fexecve(3) that does not rely on the /proc filesystem,
at least for executables (rather than scripts).  The current glibc version
of fexecve(3) is implemented via /proc, which causes problems in sandboxed
or otherwise restricted environments.

Given the desire for a /proc-free fexecve() implementation, HPA suggested
(https://lkml.org/lkml/2006/7/11/556) that an execveat(2) syscall would be
an appropriate generalization.

Also, having a new syscall means that it can take a flags argument without
back-compatibility concerns.  The current implementation just defines the
AT_EMPTY_PATH and AT_SYMLINK_NOFOLLOW flags, but other flags could be
added in future -- for example, flags for new namespaces (as suggested at
https://lkml.org/lkml/2006/7/11/474).

Related history:
 - https://lkml.org/lkml/2006/12/27/123 is an example of someone
   realizing that fexecve() is likely to fail in a chroot environment.
 - http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=514043 covered
   documenting the /proc requirement of fexecve(3) in its manpage, to
   "prevent other people from wasting their time".
 - https://bugzilla.redhat.com/show_bug.cgi?id=241609 described a
   problem where a process that did setuid() could not fexecve()
   because it no longer had access to /proc/self/fd; this has since
   been fixed.

This patch (of 4):

Add a new execveat(2) system call.  execveat() is to execve() as openat()
is to open(): it takes a file descriptor that refers to a directory, and
resolves the filename relative to that.

In addition, if the filename is empty and AT_EMPTY_PATH is specified,
execveat() executes the file to which the file descriptor refers.  This
replicates the functionality of fexecve(), which is a system call in other
UNIXen, but in Linux glibc it depends on opening "/proc/self/fd/<fd>" (and
so relies on /proc being mounted).

The filename fed to the executed program as argv[0] (or the name of the
script fed to a script interpreter) will be of the form "/dev/fd/<fd>"
(for an empty filename) or "/dev/fd/<fd>/<filename>", effectively
reflecting how the executable was found.  This does however mean that
execution of a script in a /proc-less environment won't work; also, script
execution via an O_CLOEXEC file descriptor fails (as the file will not be
accessible after exec).

Based on patches by Meredydd Luff.

Signed-off-by: David Drysdale <drysdale@google.com>
Cc: Meredydd Luff <meredydd@senatehouse.org>
Cc: Shuah Khan <shuah.kh@samsung.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Rich Felker <dalias@aerifal.cx>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13 12:42:51 -08:00
Linus Torvalds
70e71ca0af Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
Pull networking updates from David Miller:

 1) New offloading infrastructure and example 'rocker' driver for
    offloading of switching and routing to hardware.

    This work was done by a large group of dedicated individuals, not
    limited to: Scott Feldman, Jiri Pirko, Thomas Graf, John Fastabend,
    Jamal Hadi Salim, Andy Gospodarek, Florian Fainelli, Roopa Prabhu

 2) Start making the networking operate on IOV iterators instead of
    modifying iov objects in-situ during transfers.  Thanks to Al Viro
    and Herbert Xu.

 3) A set of new netlink interfaces for the TIPC stack, from Richard
    Alpe.

 4) Remove unnecessary looping during ipv6 routing lookups, from Martin
    KaFai Lau.

 5) Add PAUSE frame generation support to gianfar driver, from Matei
    Pavaluca.

 6) Allow for larger reordering levels in TCP, which are easily
    achievable in the real world right now, from Eric Dumazet.

 7) Add a variable of napi_schedule that doesn't need to disable cpu
    interrupts, from Eric Dumazet.

 8) Use a doubly linked list to optimize neigh_parms_release(), from
    Nicolas Dichtel.

 9) Various enhancements to the kernel BPF verifier, and allow eBPF
    programs to actually be attached to sockets.  From Alexei
    Starovoitov.

10) Support TSO/LSO in sunvnet driver, from David L Stevens.

11) Allow controlling ECN usage via routing metrics, from Florian
    Westphal.

12) Remote checksum offload, from Tom Herbert.

13) Add split-header receive, BQL, and xmit_more support to amd-xgbe
    driver, from Thomas Lendacky.

14) Add MPLS support to openvswitch, from Simon Horman.

15) Support wildcard tunnel endpoints in ipv6 tunnels, from Steffen
    Klassert.

16) Do gro flushes on a per-device basis using a timer, from Eric
    Dumazet.  This tries to resolve the conflicting goals between the
    desired handling of bulk vs.  RPC-like traffic.

17) Allow userspace to ask for the CPU upon what a packet was
    received/steered, via SO_INCOMING_CPU.  From Eric Dumazet.

18) Limit GSO packets to half the current congestion window, from Eric
    Dumazet.

19) Add a generic helper so that all drivers set their RSS keys in a
    consistent way, from Eric Dumazet.

20) Add xmit_more support to enic driver, from Govindarajulu
    Varadarajan.

21) Add VLAN packet scheduler action, from Jiri Pirko.

22) Support configurable RSS hash functions via ethtool, from Eyal
    Perry.

* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1820 commits)
  Fix race condition between vxlan_sock_add and vxlan_sock_release
  net/macb: fix compilation warning for print_hex_dump() called with skb->mac_header
  net/mlx4: Add support for A0 steering
  net/mlx4: Refactor QUERY_PORT
  net/mlx4_core: Add explicit error message when rule doesn't meet configuration
  net/mlx4: Add A0 hybrid steering
  net/mlx4: Add mlx4_bitmap zone allocator
  net/mlx4: Add a check if there are too many reserved QPs
  net/mlx4: Change QP allocation scheme
  net/mlx4_core: Use tasklet for user-space CQ completion events
  net/mlx4_core: Mask out host side virtualization features for guests
  net/mlx4_en: Set csum level for encapsulated packets
  be2net: Export tunnel offloads only when a VxLAN tunnel is created
  gianfar: Fix dma check map error when DMA_API_DEBUG is enabled
  cxgb4/csiostor: Don't use MASTER_MUST for fw_hello call
  net: fec: only enable mdio interrupt before phy device link up
  net: fec: clear all interrupt events to support i.MX6SX
  net: fec: reset fep link status in suspend function
  net: sock: fix access via invalid file descriptor
  net: introduce helper macro for_each_cmsghdr
  ...
2014-12-11 14:27:06 -08:00
Alexei Starovoitov
89aa075832 net: sock: allow eBPF programs to be attached to sockets
introduce new setsockopt() command:

setsockopt(sock, SOL_SOCKET, SO_ATTACH_BPF, &prog_fd, sizeof(prog_fd))

where prog_fd was received from syscall bpf(BPF_PROG_LOAD, attr, ...)
and attr->prog_type == BPF_PROG_TYPE_SOCKET_FILTER

setsockopt() calls bpf_prog_get() which increments refcnt of the program,
so it doesn't get unloaded while socket is using the program.

The same eBPF program can be attached to multiple sockets.

User task exit automatically closes socket which calls sk_filter_uncharge()
which decrements refcnt of eBPF program

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-12-05 21:47:32 -08:00
Qiaowei Ren
ee1b58d36a mpx: Extend siginfo structure to include bound violation information
This patch adds new fields about bound violation into siginfo
structure. si_lower and si_upper are respectively lower bound
and upper bound when bound violation is caused.

Signed-off-by: Qiaowei Ren <qiaowei.ren@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: linux-mm@kvack.org
Cc: linux-mips@linux-mips.org
Cc: Dave Hansen <dave@sr71.net>
Link: http://lkml.kernel.org/r/20141114151819.1908C900@viggo.jf.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-11-18 00:58:53 +01:00
Eric Dumazet
2c8c56e15d net: introduce SO_INCOMING_CPU
Alternative to RPS/RFS is to use hardware support for multiple
queues.

Then split a set of million of sockets into worker threads, each
one using epoll() to manage events on its own socket pool.

Ideally, we want one thread per RX/TX queue/cpu, but we have no way to
know after accept() or connect() on which queue/cpu a socket is managed.

We normally use one cpu per RX queue (IRQ smp_affinity being properly
set), so remembering on socket structure which cpu delivered last packet
is enough to solve the problem.

After accept(), connect(), or even file descriptor passing around
processes, applications can use :

 int cpu;
 socklen_t len = sizeof(cpu);

 getsockopt(fd, SOL_SOCKET, SO_INCOMING_CPU, &cpu, &len);

And use this information to put the socket into the right silo
for optimal performance, as all networking stack should run
on the appropriate cpu, without need to send IPI (RPS/RFS).

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-11 13:00:06 -05:00
Alexei Starovoitov
749730ce42 bpf: enable bpf syscall on x64 and i386
done as separate commit to ease conflict resolution

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 15:05:14 -04:00
Will Deacon
503e6636b6 asm-generic: add memfd_create system call to unistd.h
Commit 9183df25fe ("shm: add memfd_create() syscall") added a new
system call (memfd_create) but didn't update the asm-generic unistd
header.

This patch adds the new system call to the asm-generic version of
unistd.h so that it can be used by architectures such as arm64.

Cc: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: David Herrmann <dh.herrmann@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2014-08-18 19:47:04 +01:00
Linus Torvalds
f4f142ed4e Merge tag 'random_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/random
Pull randomness updates from Ted Ts'o:
 "Cleanups and bug fixes to /dev/random, add a new getrandom(2) system
  call, which is a superset of OpenBSD's getentropy(2) call, for use
  with userspace crypto libraries such as LibreSSL.

  Also add the ability to have a kernel thread to pull entropy from
  hardware rng devices into /dev/random"

* tag 'random_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/random:
  hwrng: Pass entropy to add_hwgenerator_randomness() in bits, not bytes
  random: limit the contribution of the hw rng to at most half
  random: introduce getrandom(2) system call
  hw_random: fix sparse warning (NULL vs 0 for pointer)
  random: use registers from interrupted code for CPU's w/o a cycle counter
  hwrng: add per-device entropy derating
  hwrng: create filler thread
  random: add_hwgenerator_randomness() for feeding entropy from devices
  random: use an improved fast_mix() function
  random: clean up interrupt entropy accounting for archs w/o cycle counters
  random: only update the last_pulled time if we actually transferred entropy
  random: remove unneeded hash of a portion of the entropy pool
  random: always update the entropy pool under the spinlock
2014-08-06 08:16:24 -07:00
Theodore Ts'o
c6e9d6f388 random: introduce getrandom(2) system call
The getrandom(2) system call was requested by the LibreSSL Portable
developers.  It is analoguous to the getentropy(2) system call in
OpenBSD.

The rationale of this system call is to provide resiliance against
file descriptor exhaustion attacks, where the attacker consumes all
available file descriptors, forcing the use of the fallback code where
/dev/[u]random is not available.  Since the fallback code is often not
well-tested, it is better to eliminate this potential failure mode
entirely.

The other feature provided by this new system call is the ability to
request randomness from the /dev/urandom entropy pool, but to block
until at least 128 bits of entropy has been accumulated in the
/dev/urandom entropy pool.  Historically, the emphasis in the
/dev/urandom development has been to ensure that urandom pool is
initialized as quickly as possible after system boot, and preferably
before the init scripts start execution.

This is because changing /dev/urandom reads to block represents an
interface change that could potentially break userspace which is not
acceptable.  In practice, on most x86 desktop and server systems, in
general the entropy pool can be initialized before it is needed (and
in modern kernels, we will printk a warning message if not).  However,
on an embedded system, this may not be the case.  And so with this new
interface, we can provide the functionality of blocking until the
urandom pool has been initialized.  Any userspace program which uses
this new functionality must take care to assure that if it is used
during the boot process, that it will not cause the init scripts or
other portions of the system startup to hang indefinitely.

SYNOPSIS
	#include <linux/random.h>

	int getrandom(void *buf, size_t buflen, unsigned int flags);

DESCRIPTION
	The system call getrandom() fills the buffer pointed to by buf
	with up to buflen random bytes which can be used to seed user
	space random number generators (i.e., DRBG's) or for other
	cryptographic uses.  It should not be used for Monte Carlo
	simulations or other programs/algorithms which are doing
	probabilistic sampling.

	If the GRND_RANDOM flags bit is set, then draw from the
	/dev/random pool instead of the /dev/urandom pool.  The
	/dev/random pool is limited based on the entropy that can be
	obtained from environmental noise, so if there is insufficient
	entropy, the requested number of bytes may not be returned.
	If there is no entropy available at all, getrandom(2) will
	either block, or return an error with errno set to EAGAIN if
	the GRND_NONBLOCK bit is set in flags.

	If the GRND_RANDOM bit is not set, then the /dev/urandom pool
	will be used.  Unlike using read(2) to fetch data from
	/dev/urandom, if the urandom pool has not been sufficiently
	initialized, getrandom(2) will block (or return -1 with the
	errno set to EAGAIN if the GRND_NONBLOCK bit is set in flags).

	The getentropy(2) system call in OpenBSD can be emulated using
	the following function:

            int getentropy(void *buf, size_t buflen)
            {
                    int     ret;

                    if (buflen > 256)
                            goto failure;
                    ret = getrandom(buf, buflen, 0);
                    if (ret < 0)
                            return ret;
                    if (ret == buflen)
                            return 0;
            failure:
                    errno = EIO;
                    return -1;
            }

RETURN VALUE
       On success, the number of bytes that was filled in the buf is
       returned.  This may not be all the bytes requested by the
       caller via buflen if insufficient entropy was present in the
       /dev/random pool, or if the system call was interrupted by a
       signal.

       On error, -1 is returned, and errno is set appropriately.

ERRORS
	EINVAL		An invalid flag was passed to getrandom(2)

	EFAULT		buf is outside the accessible address space.

	EAGAIN		The requested entropy was not available, and
			getentropy(2) would have blocked if the
			GRND_NONBLOCK flag was not set.

	EINTR		While blocked waiting for entropy, the call was
			interrupted by a signal handler; see the description
			of how interrupted read(2) calls on "slow" devices
			are handled with and without the SA_RESTART flag
			in the signal(7) man page.

NOTES
	For small requests (buflen <= 256) getrandom(2) will not
	return EINTR when reading from the urandom pool once the
	entropy pool has been initialized, and it will return all of
	the bytes that have been requested.  This is the recommended
	way to use getrandom(2), and is designed for compatibility
	with OpenBSD's getentropy() system call.

	However, if you are using GRND_RANDOM, then getrandom(2) may
	block until the entropy accounting determines that sufficient
	environmental noise has been gathered such that getrandom(2)
	will be operating as a NRBG instead of a DRBG for those people
	who are working in the NIST SP 800-90 regime.  Since it may
	block for a long time, these guarantees do *not* apply.  The
	user may want to interrupt a hanging process using a signal,
	so blocking until all of the requested bytes are returned
	would be unfriendly.

	For this reason, the user of getrandom(2) MUST always check
	the return value, in case it returns some error, or if fewer
	bytes than requested was returned.  In the case of
	!GRND_RANDOM and small request, the latter should never
	happen, but the careful userspace code (and all crypto code
	should be careful) should check for this anyway!

	Finally, unless you are doing long-term key generation (and
	perhaps not even then), you probably shouldn't be using
	GRND_RANDOM.  The cryptographic algorithms used for
	/dev/urandom are quite conservative, and so should be
	sufficient for all purposes.  The disadvantage of GRND_RANDOM
	is that it can block, and the increased complexity required to
	deal with partially fulfilled getrandom(2) requests.

Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Zach Brown <zab@zabbo.net>
2014-08-05 16:41:22 -04:00
Kees Cook
48dc92b9fc seccomp: add "seccomp" syscall
This adds the new "seccomp" syscall with both an "operation" and "flags"
parameter for future expansion. The third argument is a pointer value,
used with the SECCOMP_SET_MODE_FILTER operation. Currently, flags must
be 0. This is functionally equivalent to prctl(PR_SET_SECCOMP, ...).

In addition to the TSYNC flag later in this patch series, there is a
non-zero chance that this syscall could be used for configuring a fixed
argument area for seccomp-tracer-aware processes to pass syscall arguments
in the future. Hence, the use of "seccomp" not simply "seccomp_add_filter"
for this syscall. Additionally, this syscall uses operation, flags,
and user pointer for arguments because strictly passing arguments via
a user pointer would mean seccomp itself would be unable to trivially
filter the seccomp syscall itself.

Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Andy Lutomirski <luto@amacapital.net>
2014-07-18 12:13:37 -07:00
James Hogan
63ba600028 asm-generic: Add renameat2 syscall
Add the renameat2 syscall to the generic syscall list, which is used by the
following architectures: arc, arm64, c6x, hexagon, metag, openrisc, score,
tile, unicore32.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Cc: linux-arch@vger.kernel.org
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: Mark Salter <msalter@redhat.com>
Cc: Aurelien Jacquiot <a-jacquiot@ti.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: linux-hexagon@vger.kernel.org
Cc: linux-metag@vger.kernel.org
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Chen Liqin <liqin.linux@gmail.com>
Cc: Lennox Wu <lennox.wu@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
2014-05-20 10:59:38 +02:00
James Hogan
ffe6902b66 asm-generic: remove _STK_LIM_MAX
_STK_LIM_MAX could be used to override the RLIMIT_STACK hard limit from
an arch's include/uapi/asm-generic/resource.h file, but is no longer
used since both parisc and metag removed the override. Therefore remove
it entirely, setting the hard RLIMIT_STACK limit to RLIM_INFINITY
directly in include/asm-generic/resource.h.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: linux-arch@vger.kernel.org
Cc: Helge Deller <deller@gmx.de>
Cc: John David Anglin <dave.anglin@bell.net>
2014-05-15 00:32:09 +01:00
Jeff Layton
0d3f7a2dd2 locks: rename file-private locks to "open file description locks"
File-private locks have been merged into Linux for v3.15, and *now*
people are commenting that the name and macro definitions for the new
file-private locks suck.

...and I can't even disagree. The names and command macros do suck.

We're going to have to live with these for a long time, so it's
important that we be happy with the names before we're stuck with them.
The consensus on the lists so far is that they should be rechristened as
"open file description locks".

The name isn't a big deal for the kernel, but the command macros are not
visually distinct enough from the traditional POSIX lock macros. The
glibc and documentation folks are recommending that we change them to
look like F_OFD_{GETLK|SETLK|SETLKW}. That lessens the chance that a
programmer will typo one of the commands wrong, and also makes it easier
to spot this difference when reading code.

This patch makes the following changes that I think are necessary before
v3.15 ships:

1) rename the command macros to their new names. These end up in the uapi
   headers and so are part of the external-facing API. It turns out that
   glibc doesn't actually use the fcntl.h uapi header, but it's hard to
   be sure that something else won't. Changing it now is safest.

2) make the the /proc/locks output display these as type "OFDLCK"

Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Carlos O'Donell <carlos@redhat.com>
Cc: Stefan Metzmacher <metze@samba.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Frank Filz <ffilzlnx@mindspring.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
2014-04-22 08:23:58 -04:00
Zhang Yanfei
85892f196f madvise: correct the comment of MADV_DODUMP flag
s/MADV_NODUMP/MADV_DONTDUMP/

Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:58 -07:00
Linus Torvalds
f7789dc0d4 Merge branch 'locks-3.15' of git://git.samba.org/jlayton/linux
Pull file locking updates from Jeff Layton:
 "Highlights:

   - maintainership change for fs/locks.c.  Willy's not interested in
     maintaining it these days, and is OK with Bruce and I taking it.
   - fix for open vs setlease race that Al ID'ed
   - cleanup and consolidation of file locking code
   - eliminate unneeded BUG() call
   - merge of file-private lock implementation"

* 'locks-3.15' of git://git.samba.org/jlayton/linux:
  locks: make locks_mandatory_area check for file-private locks
  locks: fix locks_mandatory_locked to respect file-private locks
  locks: require that flock->l_pid be set to 0 for file-private locks
  locks: add new fcntl cmd values for handling file private locks
  locks: skip deadlock detection on FL_FILE_PVT locks
  locks: pass the cmd value to fcntl_getlk/getlk64
  locks: report l_pid as -1 for FL_FILE_PVT locks
  locks: make /proc/locks show IS_FILE_PVT locks as type "FLPVT"
  locks: rename locks_remove_flock to locks_remove_file
  locks: consolidate checks for compatible filp->f_mode values in setlk handlers
  locks: fix posix lock range overflow handling
  locks: eliminate BUG() call when there's an unexpected lock on file close
  locks: add __acquires and __releases annotations to locks_start and locks_stop
  locks: remove "inline" qualifier from fl_link manipulation functions
  locks: clean up comment typo
  locks: close potential race between setlease and open
  MAINTAINERS: update entry for fs/locks.c
2014-04-04 14:21:20 -07:00
Jeff Layton
5d50ffd7c3 locks: add new fcntl cmd values for handling file private locks
Due to some unfortunate history, POSIX locks have very strange and
unhelpful semantics. The thing that usually catches people by surprise
is that they are dropped whenever the process closes any file descriptor
associated with the inode.

This is extremely problematic for people developing file servers that
need to implement byte-range locks. Developers often need a "lock
management" facility to ensure that file descriptors are not closed
until all of the locks associated with the inode are finished.

Additionally, "classic" POSIX locks are owned by the process. Locks
taken between threads within the same process won't conflict with one
another, which renders them useless for synchronization between threads.

This patchset adds a new type of lock that attempts to address these
issues. These locks conflict with classic POSIX read/write locks, but
have semantics that are more like BSD locks with respect to inheritance
and behavior on close.

This is implemented primarily by changing how fl_owner field is set for
these locks. Instead of having them owned by the files_struct of the
process, they are instead owned by the filp on which they were acquired.
Thus, they are inherited across fork() and are only released when the
last reference to a filp is put.

These new semantics prevent them from being merged with classic POSIX
locks, even if they are acquired by the same process. These locks will
also conflict with classic POSIX locks even if they are acquired by
the same process or on the same file descriptor.

The new locks are managed using a new set of cmd values to the fcntl()
syscall. The initial implementation of this converts these values to
"classic" cmd values at a fairly high level, and the details are not
exposed to the underlying filesystem. We may eventually want to push
this handing out to the lower filesystem code but for now I don't
see any need for it.

Also, note that with this implementation the new cmd values are only
available via fcntl64() on 32-bit arches. There's little need to
add support for legacy apps on a new interface like this.

Signed-off-by: Jeff Layton <jlayton@redhat.com>
2014-03-31 08:24:43 -04:00
J. Bruce Fields
ef12e72a01 locks: fix posix lock range overflow handling
In the 32-bit case fcntl assigns the 64-bit f_pos and i_size to a 32-bit
off_t.

The existing range checks also seem to depend on signed arithmetic
wrapping when it overflows.  In practice maybe that works, but we can be
more careful.  That also allows us to make a more reliable distinction
between -EINVAL and -EOVERFLOW.

Note that in the 32-bit case SEEK_CUR or SEEK_END might allow the caller
to set a lock with starting point no longer representable as a 32-bit
value.  We could return -EOVERFLOW in such cases, but the locks code is
capable of handling such ranges, so we choose to be lenient here.  The
only problem is that subsequent GETLK calls on such a lock will fail
with EOVERFLOW.

While we're here, do some cleanup including consolidating code for the
flock and flock64 cases.

Signed-off-by: J. Bruce Fields <bfields@fieldses.org>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
2014-03-31 08:24:42 -04:00
Heiko Carstens
0473c9b5f0 compat: let architectures define __ARCH_WANT_COMPAT_SYS_GETDENTS64
For architecture dependent compat syscalls in common code an architecture
must define something like __ARCH_WANT_<WHATEVER> if it wants to use the
code.
This however is not true for compat_sys_getdents64 for which architectures
must define __ARCH_OMIT_COMPAT_SYS_GETDENTS64 if they do not want the code.

This leads to the situation where all architectures, except mips, get the
compat code but only x86_64, arm64 and the generic syscall architectures
actually use it.

So invert the logic, so that architectures actively must do something to
get the compat code.

This way a couple of architectures get rid of otherwise dead code.

Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2014-03-04 09:05:33 +01:00