This converts the parisc clocksources to use clocksource_register_hz/khz
This is untested, so any assistance in testing would be appreciated!
CC: Kyle McMartin <kyle@mcmartin.ca>
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
There are numerous broken references to Documentation files (in other
Documentation files, in comments, etc.). These broken references are
caused by typo's in the references, and by renames or removals of the
Documentation files. Some broken references are simply odd.
Fix these broken references, sometimes by dropping the irrelevant text
they were part of.
Signed-off-by: Paul Bolle <pebolle@tiscali.nl>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
* 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/parisc-2.6:
[PARISC] wire up sendmmsg syscall
[PARISC] fix return type of __atomic64_add_return
[PARISC] Fix futex support
This patch removes all the module loader hook implementations in the
architecture specific code where the functionality is the same as that
now provided by the recently added default hooks.
Signed-off-by: Jonas Bonn <jonas@southpole.se>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Michal Simek <monstr@monstr.eu>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
32bit and 64bit on x86 are tested and working. The rest I have looked
at closely and I can't find any problems.
setns is an easy system call to wire up. It just takes two ints so I
don't expect any weird architecture porting problems.
While doing this I have noticed that we have some architectures that are
very slow to get new system calls. cris seems to be the slowest where
the last system calls wired up were preadv and pwritev. avr32 is weird
in that recvmmsg was wired up but never declared in unistd.h. frv is
behind with perf_event_open being the last syscall wired up. On h8300
the last system call wired up was epoll_wait. On m32r the last system
call wired up was fallocate. mn10300 has recvmmsg as the last system
call wired up. The rest seem to at least have syncfs wired up which was
new in the 2.6.39.
v2: Most of the architecture support added by Daniel Lezcano <dlezcano@fr.ibm.com>
v3: ported to v2.6.36-rc4 by: Eric W. Biederman <ebiederm@xmission.com>
v4: Moved wiring up of the system call to another patch
v5: ported to v2.6.39-rc6
v6: rebased onto parisc-next and net-next to avoid syscall conflicts.
v7: ported to Linus's latest post 2.6.39 tree.
>  arch/blackfin/include/asm/unistd.h   |   3 ++-
> Â arch/blackfin/mach-common/entry.S Â Â Â | Â Â 1 +
Acked-by: Mike Frysinger <vapier@gentoo.org>
Oh - ia64 wiring looks good.
Acked-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-2.6.40' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu:
percpu: Unify input section names
percpu: Avoid extra NOP in percpu_cmpxchg16b_double
percpu: Cast away printk format warning
percpu: Always align percpu output section to PAGE_SIZE
Fix up fairly trivial conflict in arch/x86/include/asm/percpu.h as per Tejun
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/parisc-2.6:
[PARISC] wire up syncfs syscall
[PARISC] wire up the fhandle syscalls
[PARISC] wire up clock_adjtime syscall
[PARISC] wire up fanotify syscalls
[PARISC] prevent speculative re-read on cache flush
[PARISC] only make executable areas executable
[PARISC] fix pacache .size with new binutils
A new utility function (core_kernel_data()) is used to determine if a
passed in address is part of core kernel data or not. It may or may not
return true for RO data, but this utility must work for RW data.
Thus both _sdata and _edata must be defined and continuous,
without .init sections that may later be freed and replaced by
volatile memory (memory that can be freed).
This utility function is used to determine if data is safe from
ever being freed. Thus it should return true for all RW global
data that is not in a module or has been allocated, or false
otherwise.
Also change core_kernel_data() back to the more precise _sdata condition
and document the function.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Acked-by: Hirokazu Takata <takata@linux-m32r.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: linux-m68k@lists.linux-m68k.org
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Helge Deller <deller@gmx.de>
Cc: JamesE.J.Bottomley <jejb@parisc-linux.org>
Link: http://lkml.kernel.org/r/1305855298.1465.19.camel@gandalf.stny.rr.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
----
arch/alpha/kernel/vmlinux.lds.S | 1 +
arch/m32r/kernel/vmlinux.lds.S | 1 +
arch/m68k/kernel/vmlinux-std.lds | 2 ++
arch/m68k/kernel/vmlinux-sun3.lds | 1 +
arch/mips/kernel/vmlinux.lds.S | 1 +
arch/parisc/kernel/vmlinux.lds.S | 3 +++
kernel/extable.c | 12 +++++++++++-
7 files changed, 20 insertions(+), 1 deletion(-)
According to Appendix F, the TLB is the primary arbiter of speculation.
Thus, if a page has a TLB entry, it may be speculatively read into the
cache. On linux, this can cause us incoherencies because if we're about
to do a disk read, we call get_user_pages() to do the flush/invalidate
in user space, but we still potentially have the user TLB entries, and
the cache could speculate the lines back into userspace (thus causing
stale data to be used). This is fixed by purging the TLB entries before
we flush through the tmpalias space. Now, the only way the line could
be re-speculated is if the user actually tries to touch it (which is not
allowed).
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
Currently parisc has the whole kernel marked as RWX, meaning any
kernel page at all is eligible to be executed. This can cause a
theoretical problem on systems with combined I/D TLB because the act
of referencing a page causes a TLB insertion with an executable bit.
This TLB entry may be used by the CPU as the basis for speculating the
page into the I-Cache. If this speculated page is subsequently used
for a user process, there is the possibility we will get a stale
I-cache line picked up as the binary executes.
As a point of good practise, only mark actual kernel text pages as
executable. The same has to be done for init_text pages, but they're
converted to data pages (and the I-Cache flushed) when the init memory
is released.
Signed-off-by: James Bottomley <James.Bottomley@suse.de>
Fix style of flush_user_dcache_range_asm procedure declaration in
arch/parisc/kernel/pacache.s to be consistent with other assembly
procedures.
Signed-off-by: Meelis Roos <mroos@linux.ee>
Signed-off-by: James Bottomley <James.Bottomley@suse.de>