[ Upstream commit b7e27bc1d42e8e0cc58b602b529c25cd0071b336 ]
Custom policies can require file signatures based on LSM labels. These
files are normally created and only afterwards labeled, requiring them
to be signed.
Instead of requiring file signatures based on LSM labels, entire
filesystems could require file signatures. In this case, we need the
ability of writing new files without requiring file signatures.
The definition of a "new" file was originally defined as any file with
a length of zero. Subsequent patches redefined a "new" file to be based
on the FILE_CREATE open flag. By combining the open flag with a file
size of zero, this patch relaxes the file signature requirement.
Fixes: 1ac202e978e1 ima: accept previously set IMA_NEW_FILE
Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit e2f586bd83177d22072b275edd4b8b872daba924 ]
KMSAN (KernelMemorySanitizer, a new error detection tool) reports use of
uninitialized memory in selinux_socket_bind():
==================================================================
BUG: KMSAN: use of unitialized memory
inter: 0
CPU: 3 PID: 1074 Comm: packet2 Tainted: G B 4.8.0-rc6+ #1916
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
0000000000000000 ffff8800882ffb08 ffffffff825759c8 ffff8800882ffa48
ffffffff818bf551 ffffffff85bab870 0000000000000092 ffffffff85bab550
0000000000000000 0000000000000092 00000000bb0009bb 0000000000000002
Call Trace:
[< inline >] __dump_stack lib/dump_stack.c:15
[<ffffffff825759c8>] dump_stack+0x238/0x290 lib/dump_stack.c:51
[<ffffffff818bdee6>] kmsan_report+0x276/0x2e0 mm/kmsan/kmsan.c:1008
[<ffffffff818bf0fb>] __msan_warning+0x5b/0xb0 mm/kmsan/kmsan_instr.c:424
[<ffffffff822dae71>] selinux_socket_bind+0xf41/0x1080 security/selinux/hooks.c:4288
[<ffffffff8229357c>] security_socket_bind+0x1ec/0x240 security/security.c:1240
[<ffffffff84265d98>] SYSC_bind+0x358/0x5f0 net/socket.c:1366
[<ffffffff84265a22>] SyS_bind+0x82/0xa0 net/socket.c:1356
[<ffffffff81005678>] do_syscall_64+0x58/0x70 arch/x86/entry/common.c:292
[<ffffffff8518217c>] entry_SYSCALL64_slow_path+0x25/0x25 arch/x86/entry/entry_64.o:?
chained origin: 00000000ba6009bb
[<ffffffff810bb7a7>] save_stack_trace+0x27/0x50 arch/x86/kernel/stacktrace.c:67
[< inline >] kmsan_save_stack_with_flags mm/kmsan/kmsan.c:322
[< inline >] kmsan_save_stack mm/kmsan/kmsan.c:337
[<ffffffff818bd2b8>] kmsan_internal_chain_origin+0x118/0x1e0 mm/kmsan/kmsan.c:530
[<ffffffff818bf033>] __msan_set_alloca_origin4+0xc3/0x130 mm/kmsan/kmsan_instr.c:380
[<ffffffff84265b69>] SYSC_bind+0x129/0x5f0 net/socket.c:1356
[<ffffffff84265a22>] SyS_bind+0x82/0xa0 net/socket.c:1356
[<ffffffff81005678>] do_syscall_64+0x58/0x70 arch/x86/entry/common.c:292
[<ffffffff8518217c>] return_from_SYSCALL_64+0x0/0x6a arch/x86/entry/entry_64.o:?
origin description: ----address@SYSC_bind (origin=00000000b8c00900)
==================================================================
(the line numbers are relative to 4.8-rc6, but the bug persists upstream)
, when I run the following program as root:
=======================================================
#include <string.h>
#include <sys/socket.h>
#include <netinet/in.h>
int main(int argc, char *argv[]) {
struct sockaddr addr;
int size = 0;
if (argc > 1) {
size = atoi(argv[1]);
}
memset(&addr, 0, sizeof(addr));
int fd = socket(PF_INET6, SOCK_DGRAM, IPPROTO_IP);
bind(fd, &addr, size);
return 0;
}
=======================================================
(for different values of |size| other error reports are printed).
This happens because bind() unconditionally copies |size| bytes of
|addr| to the kernel, leaving the rest uninitialized. Then
security_socket_bind() reads the IP address bytes, including the
uninitialized ones, to determine the port, or e.g. pass them further to
sel_netnode_find(), which uses them to calculate a hash.
Signed-off-by: Alexander Potapenko <glider@google.com>
Acked-by: Eric Dumazet <edumazet@google.com>
[PM: fixed some whitespace damage]
Signed-off-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4b14752ec4e0d87126e636384cf37c8dd9df157c upstream.
We can't do anything reasonable in security_bounded_transition() if we
don't have a policy loaded, and in fact we could run into problems
with some of the code inside expecting a policy. Fix these problems
like we do many others in security/selinux/ss/services.c by checking
to see if the policy is loaded (ss_initialized) and returning quickly
if it isn't.
Reported-by: syzbot <syzkaller-bugs@googlegroups.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Reviewed-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ef28df55ac27e1e5cd122e19fa311d886d47a756 upstream.
The syzbot/syzkaller automated tests found a problem in
security_context_to_sid_core() during early boot (before we load the
SELinux policy) where we could potentially feed context strings without
NUL terminators into the strcmp() function.
We already guard against this during normal operation (after the SELinux
policy has been loaded) by making a copy of the context strings and
explicitly adding a NUL terminator to the end. The patch extends this
protection to the early boot case (no loaded policy) by moving the context
copy earlier in security_context_to_sid_core().
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Reviewed-By: William Roberts <william.c.roberts@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 794b4bc292f5d31739d89c0202c54e7dc9bc3add upstream.
With the 'encrypted' key type it was possible for userspace to provide a
data blob ending with a master key description shorter than expected,
e.g. 'keyctl add encrypted desc "new x" @s'. When validating such a
master key description, validate_master_desc() could read beyond the end
of the buffer. Fix this by using strncmp() instead of memcmp(). [Also
clean up the code to deduplicate some logic.]
Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: Jin Qian <jinqian@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In the absence of commit a4298e4522d6 ("net: add SOCK_RCU_FREE socket
flag") and all the associated infrastructure changes to take advantage
of a RCU grace period before freeing, there is a heightened
possibility that a security check is performed while an ill-timed
setsockopt call races in from user space. It then is prudent to null
check sk_security, and if the case, reject the permissions.
Because of the nature of this problem, hard to duplicate, no clear
path, this patch is a simplified band-aid for stable trees lacking the
infrastructure for the series of commits leading up to providing a
suitable RCU grace period. This adjustment is orthogonal to
infrastructure improvements that may nullify the needed check, but
could be added as good code hygiene in all trees.
general protection fault: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 14233 Comm: syz-executor2 Not tainted 4.4.112-g5f6325b #28
task: ffff8801d1095f00 task.stack: ffff8800b5950000
RIP: 0010:[<ffffffff81b69b7e>] [<ffffffff81b69b7e>] sock_has_perm+0x1fe/0x3e0 security/selinux/hooks.c:4069
RSP: 0018:ffff8800b5957ce0 EFLAGS: 00010202
RAX: dffffc0000000000 RBX: 1ffff10016b2af9f RCX: ffffffff81b69b51
RDX: 0000000000000002 RSI: 0000000000000000 RDI: 0000000000000010
RBP: ffff8800b5957de0 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000000 R11: 1ffff10016b2af68 R12: ffff8800b5957db8
R13: 0000000000000000 R14: ffff8800b7259f40 R15: 00000000000000d7
FS: 00007f72f5ae2700(0000) GS:ffff8801db300000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000a2fa38 CR3: 00000001d7980000 CR4: 0000000000160670
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Stack:
ffffffff81b69a1f ffff8800b5957d58 00008000b5957d30 0000000041b58ab3
ffffffff83fc82f2 ffffffff81b69980 0000000000000246 ffff8801d1096770
ffff8801d3165668 ffffffff8157844b ffff8801d1095f00
ffff880000000001
Call Trace:
[<ffffffff81b6a19d>] selinux_socket_setsockopt+0x4d/0x80 security/selinux/hooks.c:4338
[<ffffffff81b4873d>] security_socket_setsockopt+0x7d/0xb0 security/security.c:1257
[<ffffffff82df1ac8>] SYSC_setsockopt net/socket.c:1757 [inline]
[<ffffffff82df1ac8>] SyS_setsockopt+0xe8/0x250 net/socket.c:1746
[<ffffffff83776499>] entry_SYSCALL_64_fastpath+0x16/0x92
Code: c2 42 9b b6 81 be 01 00 00 00 48 c7 c7 a0 cb 2b 84 e8
f7 2f 6d ff 49 8d 7d 10 48 b8 00 00 00 00 00 fc ff df 48 89
fa 48 c1 ea 03 <0f> b6 04 02 84 c0 74 08 3c 03 0f 8e 83 01 00
00 41 8b 75 10 31
RIP [<ffffffff81b69b7e>] sock_has_perm+0x1fe/0x3e0 security/selinux/hooks.c:4069
RSP <ffff8800b5957ce0>
---[ end trace 7b5aaf788fef6174 ]---
Signed-off-by: Mark Salyzyn <salyzyn@android.com>
Acked-by: Paul Moore <paul@paul-moore.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: selinux@tycho.nsa.gov
Cc: linux-security-module@vger.kernel.org
Cc: Eric Paris <eparis@parisplace.org>
Cc: Serge E. Hallyn <serge@hallyn.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Now that the required bits have been addressed, reenable
PARAVIRT.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
We fail to see what CONFIG_KAISER_REAL_SWITCH is for: it seems to be
left over from early development, and now just obscures tricky parts
of the code. Delete it before adding PCIDs, or nokaiser boot option.
(Or if there is some good reason to keep the option, then it needs
a help text - and a "depends on KAISER", so that all those without
KAISER are not asked the question.)
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
It is absurd that KAISER should depend on SMP, but apparently nobody
has tried a UP build before: which breaks on implicit declaration of
function 'per_cpu_offset' in arch/x86/mm/kaiser.c.
Now, you would expect that to be trivially fixed up; but looking at
the System.map when that block is #ifdef'ed out of kaiser_init(),
I see that in a UP build __per_cpu_user_mapped_end is precisely at
__per_cpu_user_mapped_start, and the items carefully gathered into
that section for user-mapping on SMP, dispersed elsewhere on UP.
So, some other kind of section assignment will be needed on UP,
but implementing that is not a priority: just make KAISER depend
on SMP for now.
Also inserted a blank line before the option, tidied up the
brief Kconfig help message, and added an "If unsure, Y".
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4dca6ea1d9432052afb06baf2e3ae78188a4410b upstream.
When the request_key() syscall is not passed a destination keyring, it
links the requested key (if constructed) into the "default" request-key
keyring. This should require Write permission to the keyring. However,
there is actually no permission check.
This can be abused to add keys to any keyring to which only Search
permission is granted. This is because Search permission allows joining
the keyring. keyctl_set_reqkey_keyring(KEY_REQKEY_DEFL_SESSION_KEYRING)
then will set the default request-key keyring to the session keyring.
Then, request_key() can be used to add keys to the keyring.
Both negatively and positively instantiated keys can be added using this
method. Adding negative keys is trivial. Adding a positive key is a
bit trickier. It requires that either /sbin/request-key positively
instantiates the key, or that another thread adds the key to the process
keyring at just the right time, such that request_key() misses it
initially but then finds it in construct_alloc_key().
Fix this bug by checking for Write permission to the keyring in
construct_get_dest_keyring() when the default keyring is being used.
We don't do the permission check for non-default keyrings because that
was already done by the earlier call to lookup_user_key(). Also,
request_key_and_link() is currently passed a 'struct key *' rather than
a key_ref_t, so the "possessed" bit is unavailable.
We also don't do the permission check for the "requestor keyring", to
continue to support the use case described by commit 8bbf4976b5
("KEYS: Alter use of key instantiation link-to-keyring argument") where
/sbin/request-key recursively calls request_key() to add keys to the
original requestor's destination keyring. (I don't know of any users
who actually do that, though...)
Fixes: 3e30148c3d ("[PATCH] Keys: Make request-key create an authorisation key")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit ebe7c0a7be92bbd34c6ff5b55810546a0ee05bee ]
The hash_setup function always sets the hash_setup_done flag, even
when the hash algorithm is invalid. This prevents the default hash
algorithm defined as CONFIG_IMA_DEFAULT_HASH from being used.
This patch sets hash_setup_done flag only for valid hash algorithms.
Fixes: e7a2ad7eb6 "ima: enable support for larger default filedata hash algorithms"
Signed-off-by: Boshi Wang <wangboshi@huawei.com>
Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 020aae3ee58c1af0e7ffc4e2cc9fe4dc630338cb upstream.
Commit b65a9cfc2c ("Untangling ima mess, part 2: deal with counters")
moved the call of ima_file_check() from may_open() to do_filp_open() at a
point where the file descriptor is already opened.
This breaks the assumption made by IMA that file descriptors being closed
belong to files whose access was granted by ima_file_check(). The
consequence is that security.ima and security.evm are updated with good
values, regardless of the current appraisal status.
For example, if a file does not have security.ima, IMA will create it after
opening the file for writing, even if access is denied. Access to the file
will be allowed afterwards.
Avoid this issue by checking the appraisal status before updating
security.ima.
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 47b2c3fff4932e6fc17ce13d51a43c6969714e20 upstream.
CONFIG_KEYS_COMPAT is defined in arch-specific Kconfigs and is missing for
several 64-bit architectures : mips, parisc, tile.
At the moment and for those architectures, calling in 32-bit userspace the
keyctl syscall would return an ENOSYS error.
This patch moves the CONFIG_KEYS_COMPAT option to security/keys/Kconfig, to
make sure the compatibility wrapper is registered by default for any 64-bit
architecture as long as it is configured with CONFIG_COMPAT.
[DH: Modified to remove arm64 compat enablement also as requested by Eric
Biggers]
Signed-off-by: Bilal Amarni <bilal.amarni@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
cc: Eric Biggers <ebiggers3@gmail.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
Cc: James Cowgill <james.cowgill@mips.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a3c812f7cfd80cf51e8f5b7034f7418f6beb56c1 upstream.
When calling keyctl_read() on a key of type "trusted", if the
user-supplied buffer was too small, the kernel ignored the buffer length
and just wrote past the end of the buffer, potentially corrupting
userspace memory. Fix it by instead returning the size required, as per
the documentation for keyctl_read().
We also don't even fill the buffer at all in this case, as this is
slightly easier to implement than doing a short read, and either
behavior appears to be permitted. It also makes it match the behavior
of the "encrypted" key type.
Fixes: d00a1c72f7 ("keys: add new trusted key-type")
Reported-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Reviewed-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ee618b4619b72527aaed765f0f0b74072b281159 upstream.
As the previous patch did for encrypted-keys, zero sensitive any
potentially sensitive data related to the "trusted" key type before it
is freed. Notably, we were not zeroing the tpm_buf structures in which
the actual key is stored for TPM seal and unseal, nor were we zeroing
the trusted_key_payload in certain error paths.
Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: David Safford <safford@us.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3239b6f29bdfb4b0a2ba59df995fc9e6f4df7f1f upstream.
Commit e645016abc80 ("KEYS: fix writing past end of user-supplied buffer
in keyring_read()") made keyring_read() stop corrupting userspace memory
when the user-supplied buffer is too small. However it also made the
return value in that case be the short buffer size rather than the size
required, yet keyctl_read() is actually documented to return the size
required. Therefore, switch it over to the documented behavior.
Note that for now we continue to have it fill the short buffer, since it
did that before (pre-v3.13) and dump_key_tree_aux() in keyutils arguably
relies on it.
Fixes: e645016abc80 ("KEYS: fix writing past end of user-supplied buffer in keyring_read()")
Reported-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 363b02dab09b3226f3bd1420dad9c72b79a42a76 upstream.
Consolidate KEY_FLAG_INSTANTIATED, KEY_FLAG_NEGATIVE and the rejection
error into one field such that:
(1) The instantiation state can be modified/read atomically.
(2) The error can be accessed atomically with the state.
(3) The error isn't stored unioned with the payload pointers.
This deals with the problem that the state is spread over three different
objects (two bits and a separate variable) and reading or updating them
atomically isn't practical, given that not only can uninstantiated keys
change into instantiated or rejected keys, but rejected keys can also turn
into instantiated keys - and someone accessing the key might not be using
any locking.
The main side effect of this problem is that what was held in the payload
may change, depending on the state. For instance, you might observe the
key to be in the rejected state. You then read the cached error, but if
the key semaphore wasn't locked, the key might've become instantiated
between the two reads - and you might now have something in hand that isn't
actually an error code.
The state is now KEY_IS_UNINSTANTIATED, KEY_IS_POSITIVE or a negative error
code if the key is negatively instantiated. The key_is_instantiated()
function is replaced with key_is_positive() to avoid confusion as negative
keys are also 'instantiated'.
Additionally, barriering is included:
(1) Order payload-set before state-set during instantiation.
(2) Order state-read before payload-read when using the key.
Further separate barriering is necessary if RCU is being used to access the
payload content after reading the payload pointers.
Fixes: 146aa8b145 ("KEYS: Merge the type-specific data with the payload data")
Reported-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 60ff5b2f547af3828aebafd54daded44cfb0807a upstream.
Currently, when passed a key that already exists, add_key() will call the
key's ->update() method if such exists. But this is heavily broken in the
case where the key is uninstantiated because it doesn't call
__key_instantiate_and_link(). Consequently, it doesn't do most of the
things that are supposed to happen when the key is instantiated, such as
setting the instantiation state, clearing KEY_FLAG_USER_CONSTRUCT and
awakening tasks waiting on it, and incrementing key->user->nikeys.
It also never takes key_construction_mutex, which means that
->instantiate() can run concurrently with ->update() on the same key. In
the case of the "user" and "logon" key types this causes a memory leak, at
best. Maybe even worse, the ->update() methods of the "encrypted" and
"trusted" key types actually just dereference a NULL pointer when passed an
uninstantiated key.
Change key_create_or_update() to wait interruptibly for the key to finish
construction before continuing.
This patch only affects *uninstantiated* keys. For now we still allow a
negatively instantiated key to be updated (thereby positively
instantiating it), although that's broken too (the next patch fixes it)
and I'm not sure that anyone actually uses that functionality either.
Here is a simple reproducer for the bug using the "encrypted" key type
(requires CONFIG_ENCRYPTED_KEYS=y), though as noted above the bug
pertained to more than just the "encrypted" key type:
#include <stdlib.h>
#include <unistd.h>
#include <keyutils.h>
int main(void)
{
int ringid = keyctl_join_session_keyring(NULL);
if (fork()) {
for (;;) {
const char payload[] = "update user:foo 32";
usleep(rand() % 10000);
add_key("encrypted", "desc", payload, sizeof(payload), ringid);
keyctl_clear(ringid);
}
} else {
for (;;)
request_key("encrypted", "desc", "callout_info", ringid);
}
}
It causes:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000018
IP: encrypted_update+0xb0/0x170
PGD 7a178067 P4D 7a178067 PUD 77269067 PMD 0
PREEMPT SMP
CPU: 0 PID: 340 Comm: reproduce Tainted: G D 4.14.0-rc1-00025-g428490e38b2e #796
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
task: ffff8a467a39a340 task.stack: ffffb15c40770000
RIP: 0010:encrypted_update+0xb0/0x170
RSP: 0018:ffffb15c40773de8 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff8a467a275b00 RCX: 0000000000000000
RDX: 0000000000000005 RSI: ffff8a467a275b14 RDI: ffffffffb742f303
RBP: ffffb15c40773e20 R08: 0000000000000000 R09: ffff8a467a275b17
R10: 0000000000000020 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff8a4677057180 R15: ffff8a467a275b0f
FS: 00007f5d7fb08700(0000) GS:ffff8a467f200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000018 CR3: 0000000077262005 CR4: 00000000001606f0
Call Trace:
key_create_or_update+0x2bc/0x460
SyS_add_key+0x10c/0x1d0
entry_SYSCALL_64_fastpath+0x1f/0xbe
RIP: 0033:0x7f5d7f211259
RSP: 002b:00007ffed03904c8 EFLAGS: 00000246 ORIG_RAX: 00000000000000f8
RAX: ffffffffffffffda RBX: 000000003b2a7955 RCX: 00007f5d7f211259
RDX: 00000000004009e4 RSI: 00000000004009ff RDI: 0000000000400a04
RBP: 0000000068db8bad R08: 000000003b2a7955 R09: 0000000000000004
R10: 000000000000001a R11: 0000000000000246 R12: 0000000000400868
R13: 00007ffed03905d0 R14: 0000000000000000 R15: 0000000000000000
Code: 77 28 e8 64 34 1f 00 45 31 c0 31 c9 48 8d 55 c8 48 89 df 48 8d 75 d0 e8 ff f9 ff ff 85 c0 41 89 c4 0f 88 84 00 00 00 4c 8b 7d c8 <49> 8b 75 18 4c 89 ff e8 24 f8 ff ff 85 c0 41 89 c4 78 6d 49 8b
RIP: encrypted_update+0xb0/0x170 RSP: ffffb15c40773de8
CR2: 0000000000000018
Reported-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Eric Biggers <ebiggers@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 13923d0865ca96312197962522e88bc0aedccd74 upstream.
A key of type "encrypted" references a "master key" which is used to
encrypt and decrypt the encrypted key's payload. However, when we
accessed the master key's payload, we failed to handle the case where
the master key has been revoked, which sets the payload pointer to NULL.
Note that request_key() *does* skip revoked keys, but there is still a
window where the key can be revoked before we acquire its semaphore.
Fix it by checking for a NULL payload, treating it like a key which was
already revoked at the time it was requested.
This was an issue for master keys of type "user" only. Master keys can
also be of type "trusted", but those cannot be revoked.
Fixes: 7e70cb4978 ("keys: add new key-type encrypted")
Reviewed-by: James Morris <james.l.morris@oracle.com>
Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: David Safford <safford@us.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 57e7ba04d422c3d41c8426380303ec9b7533ded9 upstream.
security_inode_getsecurity() provides the text string value
of a security attribute. It does not provide a "secctx".
The code in xattr_getsecurity() that calls security_inode_getsecurity()
and then calls security_release_secctx() happened to work because
SElinux and Smack treat the attribute and the secctx the same way.
It fails for cap_inode_getsecurity(), because that module has no
secctx that ever needs releasing. It turns out that Smack is the
one that's doing things wrong by not allocating memory when instructed
to do so by the "alloc" parameter.
The fix is simple enough. Change the security_release_secctx() to
kfree() because it isn't a secctx being returned by
security_inode_getsecurity(). Change Smack to allocate the string when
told to do so.
Note: this also fixes memory leaks for LSMs which implement
inode_getsecurity but not release_secctx, such as capabilities.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Reported-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>