[ Upstream commit 0107042768658fea9f5f5a9c00b1c90f5dab6a06 ]
On systems with a large number of CPUs, running sysrq-<q> can cause
watchdog timeouts. There are two slow sections of code in the sysrq-<q>
path in timer_list.c.
1. print_active_timers() - This function is called by print_cpu() and
contains a slow goto loop. On a machine with hundreds of CPUs, this
loop took approximately 100ms for the first CPU in a NUMA node.
(Subsequent CPUs in the same node ran much quicker.) The total time
to print all of the CPUs is ultimately long enough to trigger the
soft lockup watchdog.
2. print_tickdevice() - This function outputs a large amount of textual
information. This function also took approximately 100ms per CPU.
Since sysrq-<q> is not a performance critical path, there should be no
harm in touching the nmi watchdog in both slow sections above. Touching
it in just one location was insufficient on systems with hundreds of
CPUs as occasional timeouts were still observed during testing.
This issue was observed on an Oracle T7 machine with 128 CPUs, but I
anticipate it may affect other systems with similarly large numbers of
CPUs.
Signed-off-by: Tom Hromatka <tom.hromatka@oracle.com>
Reviewed-by: Rob Gardner <rob.gardner@oracle.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 1b8955bc5ac575009835e371ae55e7f3af2197a9 ]
The scheduler clock framework may not use the correct timeout for the clock
wrap. This happens when a new clock driver calls sched_clock_register()
after the kernel called sched_clock_postinit(). In this case the clock wrap
timeout is too long thus sched_clock_poll() is called too late and the clock
already wrapped.
On my ARM system the scheduler was no longer scheduling any other task than
the idle task because the sched_clock() wrapped.
Signed-off-by: David Engraf <david.engraf@sysgo.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 48d0c9becc7f3c66874c100c126459a9da0fdced upstream.
The POSIX specification defines that relative CLOCK_REALTIME timers are not
affected by clock modifications. Those timers have to use CLOCK_MONOTONIC
to ensure POSIX compliance.
The introduction of the additional HRTIMER_MODE_PINNED mode broke this
requirement for pinned timers.
There is no user space visible impact because user space timers are not
using pinned mode, but for consistency reasons this needs to be fixed.
Check whether the mode has the HRTIMER_MODE_REL bit set instead of
comparing with HRTIMER_MODE_ABS.
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Fixes: 597d027573 ("timers: Framework for identifying pinned timers")
Link: http://lkml.kernel.org/r/20171221104205.7269-7-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit cef31d9af908243421258f1df35a4a644604efbe upstream.
timer_create() specifies via sigevent->sigev_notify the signal delivery for
the new timer. The valid modes are SIGEV_NONE, SIGEV_SIGNAL, SIGEV_THREAD
and (SIGEV_SIGNAL | SIGEV_THREAD_ID).
The sanity check in good_sigevent() is only checking the valid combination
for the SIGEV_THREAD_ID bit, i.e. SIGEV_SIGNAL, but if SIGEV_THREAD_ID is
not set it accepts any random value.
This has no real effects on the posix timer and signal delivery code, but
it affects show_timer() which handles the output of /proc/$PID/timers. That
function uses a string array to pretty print sigev_notify. The access to
that array has no bound checks, so random sigev_notify cause access beyond
the array bounds.
Add proper checks for the valid notify modes and remove the SIGEV_THREAD_ID
masking from various code pathes as SIGEV_NONE can never be set in
combination with SIGEV_THREAD_ID.
Reported-by: Eric Biggers <ebiggers3@gmail.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Reported-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d5421ea43d30701e03cadc56a38854c36a8b4433 upstream.
The hrtimer interrupt code contains a hang detection and mitigation
mechanism, which prevents that a long delayed hrtimer interrupt causes a
continous retriggering of interrupts which prevent the system from making
progress. If a hang is detected then the timer hardware is programmed with
a certain delay into the future and a flag is set in the hrtimer cpu base
which prevents newly enqueued timers from reprogramming the timer hardware
prior to the chosen delay. The subsequent hrtimer interrupt after the delay
clears the flag and resumes normal operation.
If such a hang happens in the last hrtimer interrupt before a CPU is
unplugged then the hang_detected flag is set and stays that way when the
CPU is plugged in again. At that point the timer hardware is not armed and
it cannot be armed because the hang_detected flag is still active, so
nothing clears that flag. As a consequence the CPU does not receive hrtimer
interrupts and no timers expire on that CPU which results in RCU stalls and
other malfunctions.
Clear the flag along with some other less critical members of the hrtimer
cpu base to ensure starting from a clean state when a CPU is plugged in.
Thanks to Paul, Sebastian and Anna-Maria for their help to get down to the
root cause of that hard to reproduce heisenbug. Once understood it's
trivial and certainly justifies a brown paperbag.
Fixes: 41d2e49493 ("hrtimer: Tune hrtimer_interrupt hang logic")
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Sewior <bigeasy@linutronix.de>
Cc: Anna-Maria Gleixner <anna-maria@linutronix.de>
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801261447590.2067@nanos
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b831275a3553c32091222ac619cfddd73a5553fb upstream.
Linus noticed that lock_timer_base() lacks a READ_ONCE() for accessing the
timer flags. As a consequence the compiler is allowed to reload the flags
between the initial check for TIMER_MIGRATION and the following timer base
computation and the spin lock of the base.
While this has not been observed (yet), we need to make sure that it never
happens.
Fixes: 0eeda71bc3 ("timer: Replace timer base by a cpu index")
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1610241711220.4983@nanos
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mike Galbraith <mgalbraith@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5d62c183f9e9df1deeea0906d099a94e8a43047a upstream.
The conditions in irq_exit() to invoke tick_nohz_irq_exit() which
subsequently invokes tick_nohz_stop_sched_tick() are:
if ((idle_cpu(cpu) && !need_resched()) || tick_nohz_full_cpu(cpu))
If need_resched() is not set, but a timer softirq is pending then this is
an indication that the softirq code punted and delegated the execution to
softirqd. need_resched() is not true because the current interrupted task
takes precedence over softirqd.
Invoking tick_nohz_irq_exit() in this case can cause an endless loop of
timer interrupts because the timer wheel contains an expired timer, but
softirqs are not yet executed. So it returns an immediate expiry request,
which causes the timer to fire immediately again. Lather, rinse and
repeat....
Prevent that by adding a check for a pending timer soft interrupt to the
conditions in tick_nohz_stop_sched_tick() which avoid calling
get_next_timer_interrupt(). That keeps the tick sched timer on the tick and
prevents a repetitive programming of an already expired timer.
Reported-by: Sebastian Siewior <bigeasy@linutronix.d>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1712272156050.2431@nanos
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Commit ff86bf0c65f1 ("alarmtimer: Rate limit periodic intervals") sets a
minimum bound on the alarm timer interval. This minimum bound shouldn't
be applied if the interval is 0. Otherwise, one-shot timers will be
converted into periodic ones.
Fixes: ff86bf0c65f1 ("alarmtimer: Rate limit periodic intervals")
Reported-by: Ben Fennema <fennema@google.com>
Signed-off-by: Greg Hackmann <ghackmann@google.com>
Cc: stable@vger.kernel.org
Cc: John Stultz <john.stultz@linaro.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ceea5e3771ed2378668455fa21861bead7504df5 upstream.
In tests, which excercise switching of clocksources, a NULL
pointer dereference can be observed on AMR64 platforms in the
clocksource read() function:
u64 clocksource_mmio_readl_down(struct clocksource *c)
{
return ~(u64)readl_relaxed(to_mmio_clksrc(c)->reg) & c->mask;
}
This is called from the core timekeeping code via:
cycle_now = tkr->read(tkr->clock);
tkr->read is the cached tkr->clock->read() function pointer.
When the clocksource is changed then tkr->clock and tkr->read
are updated sequentially. The code above results in a sequential
load operation of tkr->read and tkr->clock as well.
If the store to tkr->clock hits between the loads of tkr->read
and tkr->clock, then the old read() function is called with the
new clock pointer. As a consequence the read() function
dereferences a different data structure and the resulting 'reg'
pointer can point anywhere including NULL.
This problem was introduced when the timekeeping code was
switched over to use struct tk_read_base. Before that, it was
theoretically possible as well when the compiler decided to
reload clock in the code sequence:
now = tk->clock->read(tk->clock);
Add a helper function which avoids the issue by reading
tk_read_base->clock once into a local variable clk and then issue
the read function via clk->read(clk). This guarantees that the
read() function always gets the proper clocksource pointer handed
in.
Since there is now no use for the tkr.read pointer, this patch
also removes it, and to address stopping the fast timekeeper
during suspend/resume, it introduces a dummy clocksource to use
rather then just a dummy read function.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Stephen Boyd <stephen.boyd@linaro.org>
Cc: Miroslav Lichvar <mlichvar@redhat.com>
Cc: Daniel Mentz <danielmentz@google.com>
Link: http://lkml.kernel.org/r/1496965462-20003-2-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ff86bf0c65f14346bf2440534f9ba5ac232c39a0 upstream.
The alarmtimer code has another source of potentially rearming itself too
fast. Interval timers with a very samll interval have a similar CPU hog
effect as the previously fixed overflow issue.
The reason is that alarmtimers do not implement the normal protection
against this kind of problem which the other posix timer use:
timer expires -> queue signal -> deliver signal -> rearm timer
This scheme brings the rearming under scheduler control and prevents
permanently firing timers which hog the CPU.
Bringing this scheme to the alarm timer code is a major overhaul because it
lacks all the necessary mechanisms completely.
So for a quick fix limit the interval to one jiffie. This is not
problematic in practice as alarmtimers are usually backed by an RTC for
suspend which have 1 second resolution. It could be therefor argued that
the resolution of this clock should be set to 1 second in general, but
that's outside the scope of this fix.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kostya Serebryany <kcc@google.com>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Link: http://lkml.kernel.org/r/20170530211655.896767100@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f4781e76f90df7aec400635d73ea4c35ee1d4765 upstream.
Andrey reported a alartimer related RCU stall while fuzzing the kernel with
syzkaller.
The reason for this is an overflow in ktime_add() which brings the
resulting time into negative space and causes immediate expiry of the
timer. The following rearm with a small interval does not bring the timer
back into positive space due to the same issue.
This results in a permanent firing alarmtimer which hogs the CPU.
Use ktime_add_safe() instead which detects the overflow and clamps the
result to KTIME_SEC_MAX.
Reported-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kostya Serebryany <kcc@google.com>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Link: http://lkml.kernel.org/r/20170530211655.802921648@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9c1645727b8fa90d07256fdfcc45bf831242a3ab upstream.
The clocksource delta to nanoseconds conversion is using signed math, but
the delta is unsigned. This makes the conversion space smaller than
necessary and in case of a multiplication overflow the conversion can
become negative. The conversion is done with scaled math:
s64 nsec_delta = ((s64)clkdelta * clk->mult) >> clk->shift;
Shifting a signed integer right obvioulsy preserves the sign, which has
interesting consequences:
- Time jumps backwards
- __iter_div_u64_rem() which is used in one of the calling code pathes
will take forever to piecewise calculate the seconds/nanoseconds part.
This has been reported by several people with different scenarios:
David observed that when stopping a VM with a debugger:
"It was essentially the stopped by debugger case. I forget exactly why,
but the guest was being explicitly stopped from outside, it wasn't just
scheduling lag. I think it was something in the vicinity of 10 minutes
stopped."
When lifting the stop the machine went dead.
The stopped by debugger case is not really interesting, but nevertheless it
would be a good thing not to die completely.
But this was also observed on a live system by Liav:
"When the OS is too overloaded, delta will get a high enough value for the
msb of the sum delta * tkr->mult + tkr->xtime_nsec to be set, and so
after the shift the nsec variable will gain a value similar to
0xffffffffff000000."
Unfortunately this has been reintroduced recently with commit 6bd58f09e1d8
("time: Add cycles to nanoseconds translation"). It had been fixed a year
ago already in commit 35a4933a8959 ("time: Avoid signed overflow in
timekeeping_get_ns()").
Though it's not surprising that the issue has been reintroduced because the
function itself and the whole call chain uses s64 for the result and the
propagation of it. The change in this recent commit is subtle:
s64 nsec;
- nsec = (d * m + n) >> s:
+ nsec = d * m + n;
+ nsec >>= s;
d being type of cycle_t adds another level of obfuscation.
This wouldn't have happened if the previous change to unsigned computation
would have made the 'nsec' variable u64 right away and a follow up patch
had cleaned up the whole call chain.
There have been patches submitted which basically did a revert of the above
patch leaving everything else unchanged as signed. Back to square one. This
spawned a admittedly pointless discussion about potential users which rely
on the unsigned behaviour until someone pointed out that it had been fixed
before. The changelogs of said patches added further confusion as they made
finally false claims about the consequences for eventual users which expect
signed results.
Despite delta being cycle_t, aka. u64, it's very well possible to hand in
a signed negative value and the signed computation will happily return the
correct result. But nobody actually sat down and analyzed the code which
was added as user after the propably unintended signed conversion.
Though in sensitive code like this it's better to analyze it proper and
make sure that nothing relies on this than hunting the subtle wreckage half
a year later. After analyzing all call chains it stands that no caller can
hand in a negative value (which actually would work due to the s64 cast)
and rely on the signed math to do the right thing.
Change the conversion function to unsigned math. The conversion of all call
chains is done in a follow up patch.
This solves the starvation issue, which was caused by the negative result,
but it does not solve the underlying problem. It merily procrastinates
it. When the timekeeper update is deferred long enough that the unsigned
multiplication overflows, then time going backwards is observable again.
It does neither solve the issue of clocksources with a small counter width
which will wrap around possibly several times and cause random time stamps
to be generated. But those are usually not found on systems used for
virtualization, so this is likely a non issue.
I took the liberty to claim authorship for this simply because
analyzing all callsites and writing the changelog took substantially
more time than just making the simple s/s64/u64/ change and ignore the
rest.
Fixes: 6bd58f09e1d8 ("time: Add cycles to nanoseconds translation")
Reported-by: David Gibson <david@gibson.dropbear.id.au>
Reported-by: Liav Rehana <liavr@mellanox.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Parit Bhargava <prarit@redhat.com>
Cc: Laurent Vivier <lvivier@redhat.com>
Cc: "Christopher S. Hall" <christopher.s.hall@intel.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Link: http://lkml.kernel.org/r/20161208204228.688545601@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 27727df240c7cc84f2ba6047c6f18d5addfd25ef upstream.
When I added some extra sanity checking in timekeeping_get_ns() under
CONFIG_DEBUG_TIMEKEEPING, I missed that the NMI safe __ktime_get_fast_ns()
method was using timekeeping_get_ns().
Thus the locking added to the debug checks broke the NMI-safety of
__ktime_get_fast_ns().
This patch open-codes the timekeeping_get_ns() logic for
__ktime_get_fast_ns(), so can avoid any deadlocks in NMI.
Fixes: 4ca22c2648 "timekeeping: Add warnings when overflows or underflows are observed"
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Link: http://lkml.kernel.org/r/1471993702-29148-2-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a4f8f6667f099036c88f231dcad4cf233652c824 upstream.
It was reported that hibernation could fail on the 2nd attempt, where the
system hangs at hibernate() -> syscore_resume() -> i8237A_resume() ->
claim_dma_lock(), because the lock has already been taken.
However there is actually no other process would like to grab this lock on
that problematic platform.
Further investigation showed that the problem is triggered by setting
/sys/power/pm_trace to 1 before the 1st hibernation.
Since once pm_trace is enabled, the rtc becomes unmeaningful after suspend,
and meanwhile some BIOSes would like to adjust the 'invalid' RTC (e.g, smaller
than 1970) to the release date of that motherboard during POST stage, thus
after resumed, it may seem that the system had a significant long sleep time
which is a completely meaningless value.
Then in timekeeping_resume -> tk_debug_account_sleep_time, if the bit31 of the
sleep time happened to be set to 1, fls() returns 32 and we add 1 to
sleep_time_bin[32], which causes an out of bounds array access and therefor
memory being overwritten.
As depicted by System.map:
0xffffffff81c9d080 b sleep_time_bin
0xffffffff81c9d100 B dma_spin_lock
the dma_spin_lock.val is set to 1, which caused this problem.
This patch adds a sanity check in tk_debug_account_sleep_time()
to ensure we don't index past the sleep_time_bin array.
[jstultz: Problem diagnosed and original patch by Chen Yu, I've solved the
issue slightly differently, but borrowed his excelent explanation of the
issue here.]
Fixes: 5c83545f24 "power: Add option to log time spent in suspend"
Reported-by: Janek Kozicki <cosurgi@gmail.com>
Reported-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: linux-pm@vger.kernel.org
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Xunlei Pang <xpang@redhat.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Zhang Rui <rui.zhang@intel.com>
Link: http://lkml.kernel.org/r/1471993702-29148-3-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 37cf4dc3370fbca0344e23bb96446eb2c3548ba7 ]
For adjtimex()'s ADJ_SETOFFSET, make sure the tv_usec value is
sane. We might multiply them later which can cause an overflow
and undefined behavior.
This patch introduces new helper functions to simplify the
checking code and adds comments to clarify
Orginally this patch was by Sasha Levin, but I've basically
rewritten it, so he should get credit for finding the issue
and I should get the blame for any mistakes made since.
Also, credit to Richard Cochran for the phrasing used in the
comment for what is considered valid here.
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2c13ce8f6b2f6fd9ba2f9261b1939fc0f62d1307 upstream.
Variable "now" seems to be genuinely used unintialized
if branch
if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
is not taken and branch
if (unlikely(sighand == NULL)) {
is taken. In this case the process has been reaped and the timer is marked as
disarmed anyway. So none of the postprocessing of the sample is
required. Return right away.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Link: http://lkml.kernel.org/r/20160707223911.GA26483@p183.telecom.by
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>