Commit Graph

521 Commits

Author SHA1 Message Date
Linus Torvalds
02201e3f1b Merge tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux
Pull module updates from Rusty Russell:
 "Main excitement here is Peter Zijlstra's lockless rbtree optimization
  to speed module address lookup.  He found some abusers of the module
  lock doing that too.

  A little bit of parameter work here too; including Dan Streetman's
  breaking up the big param mutex so writing a parameter can load
  another module (yeah, really).  Unfortunately that broke the usual
  suspects, !CONFIG_MODULES and !CONFIG_SYSFS, so those fixes were
  appended too"

* tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux: (26 commits)
  modules: only use mod->param_lock if CONFIG_MODULES
  param: fix module param locks when !CONFIG_SYSFS.
  rcu: merge fix for Convert ACCESS_ONCE() to READ_ONCE() and WRITE_ONCE()
  module: add per-module param_lock
  module: make perm const
  params: suppress unused variable error, warn once just in case code changes.
  modules: clarify CONFIG_MODULE_COMPRESS help, suggest 'N'.
  kernel/module.c: avoid ifdefs for sig_enforce declaration
  kernel/workqueue.c: remove ifdefs over wq_power_efficient
  kernel/params.c: export param_ops_bool_enable_only
  kernel/params.c: generalize bool_enable_only
  kernel/module.c: use generic module param operaters for sig_enforce
  kernel/params: constify struct kernel_param_ops uses
  sysfs: tightened sysfs permission checks
  module: Rework module_addr_{min,max}
  module: Use __module_address() for module_address_lookup()
  module: Make the mod_tree stuff conditional on PERF_EVENTS || TRACING
  module: Optimize __module_address() using a latched RB-tree
  rbtree: Implement generic latch_tree
  seqlock: Introduce raw_read_seqcount_latch()
  ...
2015-07-01 10:49:25 -07:00
Shailendra Verma
402dd89d6c workqueue: fix typos in comments
tj: dropped iff -> if, iff is if and only if not a typo.  Spotted by
    Randy Dunlap.

Signed-off-by: Shailendra Verma <shailendra.capricorn@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
2015-05-29 09:20:01 -04:00
Luis R. Rodriguez
552f530cbc kernel/workqueue.c: remove ifdefs over wq_power_efficient
We can avoid an ifdef over wq_power_efficient's declaration
by just using IS_ENABLED().

Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Jani Nikula <jani.nikula@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: linux-kernel@vger.kernel.org
Cc: cocci@systeme.lip6.fr
Signed-off-by: Luis R. Rodriguez <mcgrof@suse.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2015-05-28 11:32:12 +09:30
Lai Jiangshan
37b1ef31a5 workqueue: move flush_scheduled_work() to workqueue.h
flush_scheduled_work() is just a simple call to flush_work().

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2015-05-21 17:26:22 -04:00
Lai Jiangshan
899a94fe15 workqueue: remove the lock from wq_sysfs_prep_attrs()
Reading to wq->unbound_attrs requires protection of either wq_pool_mutex
or wq->mutex, and wq_sysfs_prep_attrs() is called with wq_pool_mutex held,
so we don't need to grab wq->mutex here.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2015-05-21 17:26:22 -04:00
Lai Jiangshan
da7f91b2e2 workqueue: remove the declaration of copy_workqueue_attrs()
This pre-declaration was unneeded since a previous refactor patch
6ba94429c8 ("workqueue: Reorder sysfs code").

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2015-05-21 17:26:22 -04:00
Lai Jiangshan
d4d3e25797 workqueue: ensure attrs changes are properly synchronized
Current modification to attrs via sysfs is not fully synchronized.

Process A (change cpumask)      | Process B (change numa affinity)
wq_cpumask_store()              |
  wq_sysfs_prep_attrs()         |
                                | apply_workqueue_attrs()
  apply_workqueue_attrs()       |

It results that the Process B's operation is totally reverted
without any notification, it is a buggy behavior.  So this patch
moves wq_sysfs_prep_attrs() into the protection under wq_pool_mutex
to ensure attrs changes are properly synchronized.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2015-05-19 17:37:00 -04:00
Lai Jiangshan
a0111cf671 workqueue: separate out and refactor the locking of applying attrs
Applying attrs requires two locks: get_online_cpus() and wq_pool_mutex,
and this code is duplicated at two places (apply_workqueue_attrs() and
workqueue_set_unbound_cpumask()).  So we separate out this locking
code into apply_wqattrs_[un]lock() and do a minor refactor on
apply_workqueue_attrs().

The apply_wqattrs_[un]lock() will be also used on later patch for
ensuring attrs changes are properly synchronized.

tj: minor updates to comments

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2015-05-19 17:37:00 -04:00
Lai Jiangshan
f7142ed483 workqueue: simplify wq_update_unbound_numa()
wq_update_unbound_numa() is known be called with wq_pool_mutex held.

But wq_update_unbound_numa() requests wq->mutex before reading
wq->unbound_attrs, wq->numa_pwq_tbl[] and wq->dfl_pwq.  But these fields
were changed to be allowed being read with wq_pool_mutex held.  So we
simply remove the mutex_lock(&wq->mutex).

Without the dependence on the the mutex_lock(&wq->mutex), the test
of wq->unbound_attrs->no_numa can also be moved upward.

The old code need a long comment to describe the stableness of
@wq->unbound_attrs which is also guaranteed by wq_pool_mutex now,
so we don't need this such comment.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2015-05-18 16:22:57 -04:00
Lai Jiangshan
5b95e1af8d workqueue: wq_pool_mutex protects the attrs-installation
Current wq_pool_mutex doesn't proctect the attrs-installation, it results
that ->unbound_attrs, ->numa_pwq_tbl[] and ->dfl_pwq can only be accessed
under wq->mutex and causes some inconveniences. Example, wq_update_unbound_numa()
has to acquire wq->mutex before fetching the wq->unbound_attrs->no_numa
and the old_pwq.

attrs-installation is a short operation, so this change will no cause any
latency for other operations which also acquire the wq_pool_mutex.

The only unprotected attrs-installation code is in apply_workqueue_attrs(),
so this patch touches code less than comments.

It is also a preparation patch for next several patches which read
wq->unbound_attrs, wq->numa_pwq_tbl[] and wq->dfl_pwq with
only wq_pool_mutex held.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2015-05-18 16:22:56 -04:00
Chen Hanxiao
b749b1b673 workqueue: fix a typo
s/detemined/determined

Signed-off-by: Chen Hanxiao <chenhanxiao@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2015-05-13 10:23:56 -04:00
Gong Zhaogang
30186c6fdc workqueue: function name in the comment differs from the real function name
modify wq_calc_node_mask to wq_calc_node_cpumask

Signed-off-by: Gong Zhaogang <gongzhaogang@inspur.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2015-05-11 11:03:34 -04:00
Lai Jiangshan
042f7df15a workqueue: Allow modifying low level unbound workqueue cpumask
Allow to modify the low-level unbound workqueues cpumask through
sysfs. This is performed by traversing the entire workqueue list
and calling apply_wqattrs_prepare() on the unbound workqueues
with the new low level mask. Only after all the preparation are done,
we commit them all together.

Ordered workqueues are ignored from the low level unbound workqueue
cpumask, it will be handled in near future.

All the (default & per-node) pwqs are mandatorily controlled by
the low level cpumask. If the user configured cpumask doesn't overlap
with the low level cpumask, the low level cpumask will be used for the
wq instead.

The comment of wq_calc_node_cpumask() is updated and explicitly
requires that its first argument should be the attrs of the default
pwq.

The default wq_unbound_cpumask is cpu_possible_mask.  The workqueue
subsystem doesn't know its best default value, let the system manager
or the other subsystem set it when needed.

Changed from V8:
  merge the calculating code for the attrs of the default pwq together.
  minor change the code&comments for saving the user configured attrs.
  remove unnecessary list_del().
  minor update the comment of wq_calc_node_cpumask().
  update the comment of workqueue_set_unbound_cpumask();

Cc: Christoph Lameter <cl@linux.com>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Mike Galbraith <bitbucket@online.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Original-patch-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2015-04-30 09:24:29 -04:00
Frederic Weisbecker
b05a79280b workqueue: Create low-level unbound workqueues cpumask
Create a cpumask that limits the affinity of all unbound workqueues.
This cpumask is controlled through a file at the root of the workqueue
sysfs directory.

It works on a lower-level than the per WQ_SYSFS workqueues cpumask files
such that the effective cpumask applied for a given unbound workqueue is
the intersection of /sys/devices/virtual/workqueue/$WORKQUEUE/cpumask and
the new /sys/devices/virtual/workqueue/cpumask file.

This patch implements the basic infrastructure and the read interface.
wq_unbound_cpumask is initially set to cpu_possible_mask.

Cc: Christoph Lameter <cl@linux.com>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Mike Galbraith <bitbucket@online.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2015-04-27 11:13:40 -04:00
Lai Jiangshan
2d5f0764b5 workqueue: split apply_workqueue_attrs() into 3 stages
Current apply_workqueue_attrs() includes pwqs-allocation and pwqs-installation,
so when we batch multiple apply_workqueue_attrs()s as a transaction, we can't
ensure the transaction must succeed or fail as a complete unit.

To solve this, we split apply_workqueue_attrs() into three stages.
The first stage does the preparation: allocation memory, pwqs.
The second stage does the attrs-installaion and pwqs-installation.
The third stage frees the allocated memory and (old or unused) pwqs.

As the result, batching multiple apply_workqueue_attrs()s can
succeed or fail as a complete unit:
	1) batch do all the first stage for all the workqueues
	2) only commit all when all the above succeed.

This patch is a preparation for the next patch ("Allow modifying low level
unbound workqueue cpumask") which will do a multiple apply_workqueue_attrs().

The patch doesn't have functionality changed except two minor adjustment:
	1) free_unbound_pwq() for the error path is removed, we use the
	   heavier version put_pwq_unlocked() instead since the error path
	   is rare. this adjustment simplifies the code.
	2) the memory-allocation is also moved into wq_pool_mutex.
	   this is needed to avoid to do the further splitting.

tj: minor updates to comments.

Suggested-by: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Mike Galbraith <bitbucket@online.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2015-04-27 11:13:40 -04:00
Frederic Weisbecker
6ba94429c8 workqueue: Reorder sysfs code
The sysfs code usually belongs to the botom of the file since it deals
with high level objects. In the workqueue code it's misplaced and such
that we'll need to work around functions references to allow the sysfs
code to call APIs like apply_workqueue_attrs().

Lets move that block further in the file, almost the botom.

And declare workqueue_sysfs_unregister() just before destroy_workqueue()
which reference it.

tj: Moved workqueue_sysfs_unregister() forward declaration where other
    forward declarations are.

Suggested-by: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Mike Galbraith <bitbucket@online.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2015-04-06 11:16:04 -04:00
Tejun Heo
3494fc3084 workqueue: dump workqueues on sysrq-t
Workqueues are used extensively throughout the kernel but sometimes
it's difficult to debug stalls involving work items because visibility
into its inner workings is fairly limited.  Although sysrq-t task dump
annotates each active worker task with the information on the work
item being executed, it is challenging to find out which work items
are pending or delayed on which queues and how pools are being
managed.

This patch implements show_workqueue_state() which dumps all busy
workqueues and pools and is called from the sysrq-t handler.  At the
end of sysrq-t dump, something like the following is printed.

 Showing busy workqueues and worker pools:
 ...
 workqueue filler_wq: flags=0x0
   pwq 2: cpus=1 node=0 flags=0x0 nice=0 active=2/256
     in-flight: 491:filler_workfn, 507:filler_workfn
   pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=2/256
     in-flight: 501:filler_workfn
     pending: filler_workfn
 ...
 workqueue test_wq: flags=0x8
   pwq 2: cpus=1 node=0 flags=0x0 nice=0 active=1/1
     in-flight: 510(RESCUER):test_workfn BAR(69) BAR(500)
     delayed: test_workfn1 BAR(492), test_workfn2
 ...
 pool 0: cpus=0 node=0 flags=0x0 nice=0 workers=2 manager: 137
 pool 2: cpus=1 node=0 flags=0x0 nice=0 workers=3 manager: 469
 pool 3: cpus=1 node=0 flags=0x0 nice=-20 workers=2 idle: 16
 pool 8: cpus=0-3 flags=0x4 nice=0 workers=2 manager: 62

The above shows that test_wq is executing test_workfn() on pid 510
which is the rescuer and also that there are two tasks 69 and 500
waiting for the work item to finish in flush_work().  As test_wq has
max_active of 1, there are two work items for test_workfn1() and
test_workfn2() which are delayed till the current work item is
finished.  In addition, pid 492 is flushing test_workfn1().

The work item for test_workfn() is being executed on pwq of pool 2
which is the normal priority per-cpu pool for CPU 1.  The pool has
three workers, two of which are executing filler_workfn() for
filler_wq and the last one is assuming the manager role trying to
create more workers.

This extra workqueue state dump will hopefully help chasing down hangs
involving workqueues.

v3: cpulist_pr_cont() replaced with "%*pbl" printf formatting.

v2: As suggested by Andrew, minor formatting change in pr_cont_work(),
    printk()'s replaced with pr_info()'s, and cpumask printing now
    uses cpulist_pr_cont().

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
CC: Ingo Molnar <mingo@redhat.com>
2015-03-09 09:22:28 -04:00
Tejun Heo
2607d7a6db workqueue: keep track of the flushing task and pool manager
Add wq_barrier->task and worker_pool->manager to keep track of the
flushing task and pool manager respectively.  These are purely
informational and will be used to implement sysrq dump of workqueues.

Signed-off-by: Tejun Heo <tj@kernel.org>
2015-03-09 09:22:28 -04:00
Tejun Heo
e2dca7adff workqueue: make the workqueues list RCU walkable
The workqueues list is protected by wq_pool_mutex and a workqueue and
its subordinate data structures are freed directly on destruction.  We
want to add the ability dump workqueues from a sysrq callback which
requires walking all workqueues without grabbing wq_pool_mutex.  This
patch makes freeing of workqueues RCU protected and makes the
workqueues list walkable while holding RCU read lock.

Note that pool_workqueues and pools are already sched-RCU protected.
For consistency, workqueues are also protected with sched-RCU.

While at it, reverse the workqueues list so that a workqueue which is
created earlier comes before.  The order of the list isn't significant
functionally but this makes the planned sysrq dump list system
workqueues first.

Signed-off-by: Tejun Heo <tj@kernel.org>
2015-03-09 09:22:28 -04:00
Tejun Heo
8603e1b300 workqueue: fix hang involving racing cancel[_delayed]_work_sync()'s for PREEMPT_NONE
cancel[_delayed]_work_sync() are implemented using
__cancel_work_timer() which grabs the PENDING bit using
try_to_grab_pending() and then flushes the work item with PENDING set
to prevent the on-going execution of the work item from requeueing
itself.

try_to_grab_pending() can always grab PENDING bit without blocking
except when someone else is doing the above flushing during
cancelation.  In that case, try_to_grab_pending() returns -ENOENT.  In
this case, __cancel_work_timer() currently invokes flush_work().  The
assumption is that the completion of the work item is what the other
canceling task would be waiting for too and thus waiting for the same
condition and retrying should allow forward progress without excessive
busy looping

Unfortunately, this doesn't work if preemption is disabled or the
latter task has real time priority.  Let's say task A just got woken
up from flush_work() by the completion of the target work item.  If,
before task A starts executing, task B gets scheduled and invokes
__cancel_work_timer() on the same work item, its try_to_grab_pending()
will return -ENOENT as the work item is still being canceled by task A
and flush_work() will also immediately return false as the work item
is no longer executing.  This puts task B in a busy loop possibly
preventing task A from executing and clearing the canceling state on
the work item leading to a hang.

task A			task B			worker

						executing work
__cancel_work_timer()
  try_to_grab_pending()
  set work CANCELING
  flush_work()
    block for work completion
						completion, wakes up A
			__cancel_work_timer()
			while (forever) {
			  try_to_grab_pending()
			    -ENOENT as work is being canceled
			  flush_work()
			    false as work is no longer executing
			}

This patch removes the possible hang by updating __cancel_work_timer()
to explicitly wait for clearing of CANCELING rather than invoking
flush_work() after try_to_grab_pending() fails with -ENOENT.

Link: http://lkml.kernel.org/g/20150206171156.GA8942@axis.com

v3: bit_waitqueue() can't be used for work items defined in vmalloc
    area.  Switched to custom wake function which matches the target
    work item and exclusive wait and wakeup.

v2: v1 used wake_up() on bit_waitqueue() which leads to NULL deref if
    the target bit waitqueue has wait_bit_queue's on it.  Use
    DEFINE_WAIT_BIT() and __wake_up_bit() instead.  Reported by Tomeu
    Vizoso.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Rabin Vincent <rabin.vincent@axis.com>
Cc: Tomeu Vizoso <tomeu.vizoso@gmail.com>
Cc: stable@vger.kernel.org
Tested-by: Jesper Nilsson <jesper.nilsson@axis.com>
Tested-by: Rabin Vincent <rabin.vincent@axis.com>
2015-03-05 08:04:13 -05:00
Tejun Heo
dfbcbf42dd workqueue: use %*pb[l] to format bitmaps including cpumasks and nodemasks
printk and friends can now format bitmaps using '%*pb[l]'.  cpumask
and nodemask also provide cpumask_pr_args() and nodemask_pr_args()
respectively which can be used to generate the two printf arguments
necessary to format the specified cpu/nodemask.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:37 -08:00
Tejun Heo
29187a9eea workqueue: fix subtle pool management issue which can stall whole worker_pool
A worker_pool's forward progress is guaranteed by the fact that the
last idle worker assumes the manager role to create more workers and
summon the rescuers if creating workers doesn't succeed in timely
manner before proceeding to execute work items.

This manager role is implemented in manage_workers(), which indicates
whether the worker may proceed to work item execution with its return
value.  This is necessary because multiple workers may contend for the
manager role, and, if there already is a manager, others should
proceed to work item execution.

Unfortunately, the function also indicates that the worker may proceed
to work item execution if need_to_create_worker() is false at the head
of the function.  need_to_create_worker() tests the following
conditions.

	pending work items && !nr_running && !nr_idle

The first and third conditions are protected by pool->lock and thus
won't change while holding pool->lock; however, nr_running can change
asynchronously as other workers block and resume and while it's likely
to be zero, as someone woke this worker up in the first place, some
other workers could have become runnable inbetween making it non-zero.

If this happens, manage_worker() could return false even with zero
nr_idle making the worker, the last idle one, proceed to execute work
items.  If then all workers of the pool end up blocking on a resource
which can only be released by a work item which is pending on that
pool, the whole pool can deadlock as there's no one to create more
workers or summon the rescuers.

This patch fixes the problem by removing the early exit condition from
maybe_create_worker() and making manage_workers() return false iff
there's already another manager, which ensures that the last worker
doesn't start executing work items.

We can leave the early exit condition alone and just ignore the return
value but the only reason it was put there is because the
manage_workers() used to perform both creations and destructions of
workers and thus the function may be invoked while the pool is trying
to reduce the number of workers.  Now that manage_workers() is called
only when more workers are needed, the only case this early exit
condition is triggered is rare race conditions rendering it pointless.

Tested with simulated workload and modified workqueue code which
trigger the pool deadlock reliably without this patch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Eric Sandeen <sandeen@sandeen.net>
Link: http://lkml.kernel.org/g/54B019F4.8030009@sandeen.net
Cc: Dave Chinner <david@fromorbit.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: stable@vger.kernel.org
2015-01-16 14:21:16 -05:00
NeilBrown
008847f66c workqueue: allow rescuer thread to do more work.
When there is serious memory pressure, all workers in a pool could be
blocked, and a new thread cannot be created because it requires memory
allocation.

In this situation a WQ_MEM_RECLAIM workqueue will wake up the
rescuer thread to do some work.

The rescuer will only handle requests that are already on ->worklist.
If max_requests is 1, that means it will handle a single request.

The rescuer will be woken again in 100ms to handle another max_requests
requests.

I've seen a machine (running a 3.0 based "enterprise" kernel) with
thousands of requests queued for xfslogd, which has a max_requests of
1, and is needed for retiring all 'xfs' write requests.  When one of
the worker pools gets into this state, it progresses extremely slowly
and possibly never recovers (only waited an hour or two).

With this patch we leave a pool_workqueue on mayday list
until it is clearly no longer in need of assistance.  This allows
all requests to be handled in a timely fashion.

We keep each pool_workqueue on the mayday list until
need_to_create_worker() is false, and no work for this workqueue is
found in the pool.

I have tested this in combination with a (hackish) patch which forces
all work items to be handled by the rescuer thread.  In that context
it significantly improves performance.  A similar patch for a 3.0
kernel significantly improved performance on a heavy work load.

Thanks to Jan Kara for some design ideas, and to Dongsu Park for
some comments and testing.

tj: Inverted the lock order between wq_mayday_lock and pool->lock with
    a preceding patch and simplified this patch.  Added comment and
    updated changelog accordingly.  Dongsu spotted missing get_pwq()
    in the simplified code.

Cc: Dongsu Park <dongsu.park@profitbricks.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-12-08 12:39:16 -05:00
Tejun Heo
b2d829096b workqueue: invert the order between pool->lock and wq_mayday_lock
Currently, pool->lock nests inside pool->lock.  There's no inherent
reason for this order.  The only place where the two locks are held
together is pool_mayday_timeout() and it just got decided that way.

This nesting order turns out to complicate things with the planned
rescuer_thread() update.  Let's invert them.  This doesn't cause any
behavior differences.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: NeilBrown <neilb@suse.de>
Cc: Dongsu Park <dongsu.park@profitbricks.com>
2014-12-08 12:39:16 -05:00
Tejun Heo
0479c8c549 workqueue: cosmetic update in rescuer_thread()
rescuer_thread() caches &rescuer->scheduled in a local variable
scheduled for convenience.  There's one WARN_ON_ONCE() which was using
&rescuer->scheduled directly.  Replace it with the local variable.

This patch causes no functional difference.

Signed-off-by: Tejun Heo <tj@kernel.org>
2014-12-04 10:14:54 -05:00