commit cfe02a8a973e7e5f66926b8ae38dfce404b19e29 upstream.
When all subsystems are disabled, gcc notices that cgroup_subsys_enabled_key
is a zero-length array and that any access to it must be out of bounds:
In file included from ../include/linux/cgroup.h:19:0,
from ../kernel/cgroup.c:31:
../kernel/cgroup.c: In function 'cgroup_add_cftypes':
../kernel/cgroup.c:261:53: error: array subscript is above array bounds [-Werror=array-bounds]
return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~
../include/linux/jump_label.h:271:40: note: in definition of macro 'static_key_enabled'
static_key_count((struct static_key *)x) > 0; \
^
We should never call the function in this particular case, so this is
not a bug. In order to silence the warning, this adds an explicit check
for the CGROUP_SUBSYS_COUNT==0 case.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8fa3b8d689a54d6d04ff7803c724fb7aca6ce98e upstream.
If percpu_ref initialization fails during css_create(), the free path
can end up trying to free css->id of zero. As ID 0 is unused, it
doesn't cause a critical breakage but it does trigger a warning
message. Fix it by setting css->id to -1 from init_and_link_css().
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Wenwei Tao <ww.tao0320@gmail.com>
Fixes: 01e586598b ("cgroup: release css->id after css_free")
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8bb5ef79bc0f4016ecf79e8dce6096a3c63603e4 upstream.
There are three subsystem callbacks in css shutdown path -
css_offline(), css_released() and css_free(). Except for
css_released(), cgroup core didn't guarantee the order of invocation.
css_offline() or css_free() could be called on a parent css before its
children. This behavior is unexpected and led to bugs in cpu and
memory controller.
The previous patch updated ordering for css_offline() which fixes the
cpu controller issue. While there currently isn't a known bug caused
by misordering of css_free() invocations, let's fix it too for
consistency.
css_free() ordering can be trivially fixed by moving putting of the
parent css below css_free() invocation.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5cf1cacb49aee39c3e02ae87068fc3c6430659b0 upstream.
Since e93ad19d0564 ("cpuset: make mm migration asynchronous"), cpuset
kicks off asynchronous NUMA node migration if necessary during task
migration and flushes it from cpuset_post_attach_flush() which is
called at the end of __cgroup_procs_write(). This is to avoid
performing migration with cgroup_threadgroup_rwsem write-locked which
can lead to deadlock through dependency on kworker creation.
memcg has a similar issue with charge moving, so let's convert it to
an official callback rather than the current one-off cpuset specific
function. This patch adds cgroup_subsys->post_attach callback and
makes cpuset register cpuset_post_attach_flush() as its ->post_attach.
The conversion is mostly one-to-one except that the new callback is
called under cgroup_mutex. This is to guarantee that no other
migration operations are started before ->post_attach callbacks are
finished. cgroup_mutex is one of the outermost mutex in the system
and has never been and shouldn't be a problem. We can add specialized
synchronization around __cgroup_procs_write() but I don't think
there's any noticeable benefit.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2b021cbf3cb6208f0d40fd2f1869f237934340ed upstream.
Before 2e91fa7f6d ("cgroup: keep zombies associated with their
original cgroups"), all dead tasks were associated with init_css_set.
If a zombie task is requested for migration, while migration prep
operations would still be performed on init_css_set, the actual
migration would ignore zombie tasks. As init_css_set is always valid,
this worked fine.
However, after 2e91fa7f6d, zombie tasks stay with the css_set it was
associated with at the time of death. Let's say a task T associated
with cgroup A on hierarchy H-1 and cgroup B on hiearchy H-2. After T
becomes a zombie, it would still remain associated with A and B. If A
only contains zombie tasks, it can be removed. On removal, A gets
marked offline but stays pinned until all zombies are drained. At
this point, if migration is initiated on T to a cgroup C on hierarchy
H-2, migration path would try to prepare T's css_set for migration and
trigger the following.
WARNING: CPU: 0 PID: 1576 at kernel/cgroup.c:474 cgroup_get+0x121/0x160()
CPU: 0 PID: 1576 Comm: bash Not tainted 4.4.0-work+ #289
...
Call Trace:
[<ffffffff8127e63c>] dump_stack+0x4e/0x82
[<ffffffff810445e8>] warn_slowpath_common+0x78/0xb0
[<ffffffff810446d5>] warn_slowpath_null+0x15/0x20
[<ffffffff810c33e1>] cgroup_get+0x121/0x160
[<ffffffff810c349b>] link_css_set+0x7b/0x90
[<ffffffff810c4fbc>] find_css_set+0x3bc/0x5e0
[<ffffffff810c5269>] cgroup_migrate_prepare_dst+0x89/0x1f0
[<ffffffff810c7547>] cgroup_attach_task+0x157/0x230
[<ffffffff810c7a17>] __cgroup_procs_write+0x2b7/0x470
[<ffffffff810c7bdc>] cgroup_tasks_write+0xc/0x10
[<ffffffff810c4790>] cgroup_file_write+0x30/0x1b0
[<ffffffff811c68fc>] kernfs_fop_write+0x13c/0x180
[<ffffffff81151673>] __vfs_write+0x23/0xe0
[<ffffffff81152494>] vfs_write+0xa4/0x1a0
[<ffffffff811532d4>] SyS_write+0x44/0xa0
[<ffffffff814af2d7>] entry_SYSCALL_64_fastpath+0x12/0x6f
It doesn't make sense to prepare migration for css_sets pointing to
dead cgroups as they are guaranteed to contain only zombies which are
ignored later during migration. This patch makes cgroup destruction
path mark all affected css_sets as dead and updates the migration path
to ignore them during preparation.
Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: 2e91fa7f6d ("cgroup: keep zombies associated with their original cgroups")
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit aa226ff4a1ce79f229c6b7a4c0a14e17fececd01 upstream.
There are three subsystem callbacks in css shutdown path -
css_offline(), css_released() and css_free(). Except for
css_released(), cgroup core didn't guarantee the order of invocation.
css_offline() or css_free() could be called on a parent css before its
children. This behavior is unexpected and led to bugs in cpu and
memory controller.
This patch updates offline path so that a parent css is never offlined
before its children. Each css keeps online_cnt which reaches zero iff
itself and all its children are offline and offline_css() is invoked
only after online_cnt reaches zero.
This fixes the memory controller bug and allows the fix for cpu
controller.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reported-by: Brian Christiansen <brian.o.christiansen@gmail.com>
Link: http://lkml.kernel.org/g/5698A023.9070703@de.ibm.com
Link: http://lkml.kernel.org/g/CAKB58ikDkzc8REt31WBkD99+hxNzjK4+FBmhkgS+NVrC9vjMSg@mail.gmail.com
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e93ad19d05648397ef3bcb838d26aec06c245dc0 upstream.
If "cpuset.memory_migrate" is set, when a process is moved from one
cpuset to another with a different memory node mask, pages in used by
the process are migrated to the new set of nodes. This was performed
synchronously in the ->attach() callback, which is synchronized
against process management. Recently, the synchronization was changed
from per-process rwsem to global percpu rwsem for simplicity and
optimization.
Combined with the synchronous mm migration, this led to deadlocks
because mm migration could schedule a work item which may in turn try
to create a new worker blocking on the process management lock held
from cgroup process migration path.
This heavy an operation shouldn't be performed synchronously from that
deep inside cgroup migration in the first place. This patch punts the
actual migration to an ordered workqueue and updates cgroup process
migration and cpuset config update paths to flush the workqueue after
all locks are released. This way, the operations still seem
synchronous to userland without entangling mm migration with process
management synchronization. CPU hotplug can also invoke mm migration
but there's no reason for it to wait for mm migrations and thus
doesn't synchronize against their completions.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Consider the following v2 hierarchy.
P0 (+memory) --- P1 (-memory) --- A
\- B
P0 has memory enabled in its subtree_control while P1 doesn't. If
both A and B contain processes, they would belong to the memory css of
P1. Now if memory is enabled on P1's subtree_control, memory csses
should be created on both A and B and A's processes should be moved to
the former and B's processes the latter. IOW, enabling controllers
can cause atomic migrations into different csses.
The core cgroup migration logic has been updated accordingly but the
controller migration methods haven't and still assume that all tasks
migrate to a single target css; furthermore, the methods were fed the
css in which subtree_control was updated which is the parent of the
target csses. pids controller depends on the migration methods to
move charges and this made the controller attribute charges to the
wrong csses often triggering the following warning by driving a
counter negative.
WARNING: CPU: 1 PID: 1 at kernel/cgroup_pids.c:97 pids_cancel.constprop.6+0x31/0x40()
Modules linked in:
CPU: 1 PID: 1 Comm: systemd Not tainted 4.4.0-rc1+ #29
...
ffffffff81f65382 ffff88007c043b90 ffffffff81551ffc 0000000000000000
ffff88007c043bc8 ffffffff810de202 ffff88007a752000 ffff88007a29ab00
ffff88007c043c80 ffff88007a1d8400 0000000000000001 ffff88007c043bd8
Call Trace:
[<ffffffff81551ffc>] dump_stack+0x4e/0x82
[<ffffffff810de202>] warn_slowpath_common+0x82/0xc0
[<ffffffff810de2fa>] warn_slowpath_null+0x1a/0x20
[<ffffffff8118e031>] pids_cancel.constprop.6+0x31/0x40
[<ffffffff8118e0fd>] pids_can_attach+0x6d/0xf0
[<ffffffff81188a4c>] cgroup_taskset_migrate+0x6c/0x330
[<ffffffff81188e05>] cgroup_migrate+0xf5/0x190
[<ffffffff81189016>] cgroup_attach_task+0x176/0x200
[<ffffffff8118949d>] __cgroup_procs_write+0x2ad/0x460
[<ffffffff81189684>] cgroup_procs_write+0x14/0x20
[<ffffffff811854e5>] cgroup_file_write+0x35/0x1c0
[<ffffffff812e26f1>] kernfs_fop_write+0x141/0x190
[<ffffffff81265f88>] __vfs_write+0x28/0xe0
[<ffffffff812666fc>] vfs_write+0xac/0x1a0
[<ffffffff81267019>] SyS_write+0x49/0xb0
[<ffffffff81bcef32>] entry_SYSCALL_64_fastpath+0x12/0x76
This patch fixes the bug by removing @css parameter from the three
migration methods, ->can_attach, ->cancel_attach() and ->attach() and
updating cgroup_taskset iteration helpers also return the destination
css in addition to the task being migrated. All controllers are
updated accordingly.
* Controllers which don't care whether there are one or multiple
target csses can be converted trivially. cpu, io, freezer, perf,
netclassid and netprio fall in this category.
* cpuset's current implementation assumes that there's single source
and destination and thus doesn't support v2 hierarchy already. The
only change made by this patchset is how that single destination css
is obtained.
* memory migration path already doesn't do anything on v2. How the
single destination css is obtained is updated and the prep stage of
mem_cgroup_can_attach() is reordered to accomodate the change.
* pids is the only controller which was affected by this bug. It now
correctly handles multi-destination migrations and no longer causes
counter underflow from incorrect accounting.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Cc: Aleksa Sarai <cyphar@cyphar.com>
A css_set represents the relationship between a set of tasks and
css's. css_set never pinned the associated css's. This was okay
because tasks used to always disassociate immediately (in RCU sense) -
either a task is moved to a different css_set or exits and never
accesses css_set again.
Unfortunately, afcf6c8b75 ("cgroup: add cgroup_subsys->free() method
and use it to fix pids controller") and patches leading up to it made
a zombie hold onto its css_set and deref the associated css's on its
release. Nothing pins the css's after exit and it might have already
been freed leading to use-after-free.
general protection fault: 0000 [#1] PREEMPT SMP
task: ffffffff81bf2500 ti: ffffffff81be4000 task.ti: ffffffff81be4000
RIP: 0010:[<ffffffff810fa205>] [<ffffffff810fa205>] pids_cancel.constprop.4+0x5/0x40
...
Call Trace:
<IRQ>
[<ffffffff810fb02d>] ? pids_free+0x3d/0xa0
[<ffffffff810f8893>] cgroup_free+0x53/0xe0
[<ffffffff8104ed62>] __put_task_struct+0x42/0x130
[<ffffffff81053557>] delayed_put_task_struct+0x77/0x130
[<ffffffff810c6b34>] rcu_process_callbacks+0x2f4/0x820
[<ffffffff810c6af3>] ? rcu_process_callbacks+0x2b3/0x820
[<ffffffff81056e54>] __do_softirq+0xd4/0x460
[<ffffffff81057369>] irq_exit+0x89/0xa0
[<ffffffff81876212>] smp_apic_timer_interrupt+0x42/0x50
[<ffffffff818747f4>] apic_timer_interrupt+0x84/0x90
<EOI>
...
Code: 5b 5d c3 48 89 df 48 c7 c2 c9 f9 ae 81 48 c7 c6 91 2c ae 81 e8 1d 94 0e 00 31 c0 5b 5d c3 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 <f0> 48 83 87 e0 00 00 00 ff 78 01 c3 80 3d 08 7a c1 00 00 74 02
RIP [<ffffffff810fa205>] pids_cancel.constprop.4+0x5/0x40
RSP <ffff88001fc03e20>
---[ end trace 89a4a4b916b90c49 ]---
Kernel panic - not syncing: Fatal exception in interrupt
Kernel Offset: disabled
---[ end Kernel panic - not syncing: Fatal exception in interrupt
Fix it by making css_set pin the associate css's until its release.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Dave Jones <davej@codemonkey.org.uk>
Reported-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Link: http://lkml.kernel.org/g/20151120041836.GA18390@codemonkey.org.uk
Link: http://lkml.kernel.org/g/5652D448.3080002@bmw-carit.de
Fixes: afcf6c8b75 ("cgroup: add cgroup_subsys->free() method and use it to fix pids controller")
6f60eade24 ("cgroup: generalize obtaining the handles of and
notifying cgroup files") introduced cftype->file_offset so that the
handles for per-css file instances can be recorded. These handles
then can be used, for example, to generate file modified
notifications.
Unfortunately, it made the wrong assumption that files are created
once for a given css and removed on its destruction. Due to the
dependencies among subsystems, a css may be hidden from userland and
then later shown again. This is implemented by removing and
re-creating the affected files, so the associated kernfs_node for a
given cgroup file may change over time. This incorrect assumption led
to the corruption of css->files lists.
Reimplement cftype->file_offset handling so that cgroup_file->kn is
protected by a lock and updated as files are created and destroyed.
This also makes keeping them on per-cgroup list unnecessary.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: James Sedgwick <jsedgwick@fb.com>
Fixes: 6f60eade24 ("cgroup: generalize obtaining the handles of and notifying cgroup files")
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Zefan Li <lizefan@huawei.com>
__GFP_WAIT has been used to identify atomic context in callers that hold
spinlocks or are in interrupts. They are expected to be high priority and
have access one of two watermarks lower than "min" which can be referred
to as the "atomic reserve". __GFP_HIGH users get access to the first
lower watermark and can be called the "high priority reserve".
Over time, callers had a requirement to not block when fallback options
were available. Some have abused __GFP_WAIT leading to a situation where
an optimisitic allocation with a fallback option can access atomic
reserves.
This patch uses __GFP_ATOMIC to identify callers that are truely atomic,
cannot sleep and have no alternative. High priority users continue to use
__GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and
are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify
callers that want to wake kswapd for background reclaim. __GFP_WAIT is
redefined as a caller that is willing to enter direct reclaim and wake
kswapd for background reclaim.
This patch then converts a number of sites
o __GFP_ATOMIC is used by callers that are high priority and have memory
pools for those requests. GFP_ATOMIC uses this flag.
o Callers that have a limited mempool to guarantee forward progress clear
__GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall
into this category where kswapd will still be woken but atomic reserves
are not used as there is a one-entry mempool to guarantee progress.
o Callers that are checking if they are non-blocking should use the
helper gfpflags_allow_blocking() where possible. This is because
checking for __GFP_WAIT as was done historically now can trigger false
positives. Some exceptions like dm-crypt.c exist where the code intent
is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to
flag manipulations.
o Callers that built their own GFP flags instead of starting with GFP_KERNEL
and friends now also need to specify __GFP_KSWAPD_RECLAIM.
The first key hazard to watch out for is callers that removed __GFP_WAIT
and was depending on access to atomic reserves for inconspicuous reasons.
In some cases it may be appropriate for them to use __GFP_HIGH.
The second key hazard is callers that assembled their own combination of
GFP flags instead of starting with something like GFP_KERNEL. They may
now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless
if it's missed in most cases as other activity will wake kswapd.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
css_task_iter_next() checked @it->cur_task before grabbing
css_set_lock and assumed that the result won't change afterwards;
however, tasks could leave the cgroup being iterated terminating the
iterator before css_task_lock is acquired. If this happens,
css_task_iter_next() tries to calculate the current task from NULL
cg_list pointer leading to the following oops.
BUG: unable to handle kernel paging request at fffffffffffff7d0
IP: [<ffffffff810d5f22>] css_task_iter_next+0x42/0x80
...
CPU: 4 PID: 6391 Comm: JobQDisp2 Not tainted 4.0.9-22_fbk4_rc3_81616_ge8d9cb6 #1
Hardware name: Quanta Freedom/Winterfell, BIOS F03_3B08 03/04/2014
task: ffff880868e46400 ti: ffff88083404c000 task.ti: ffff88083404c000
RIP: 0010:[<ffffffff810d5f22>] [<ffffffff810d5f22>] css_task_iter_next+0x42/0x80
RSP: 0018:ffff88083404fd28 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff88083404fd68 RCX: ffff8804697fb8b0
RDX: fffffffffffff7c0 RSI: ffff8803b7dff800 RDI: ffffffff822c0278
RBP: ffff88083404fd38 R08: 0000000000017160 R09: ffff88046f4070c0
R10: ffffffff810d61f7 R11: 0000000000000293 R12: ffff880863bf8400
R13: ffff88046b87fd80 R14: 0000000000000000 R15: ffff88083404fe58
FS: 00007fa0567e2700(0000) GS:ffff88046f900000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: fffffffffffff7d0 CR3: 0000000469568000 CR4: 00000000001406e0
Stack:
0000000000000246 0000000000000000 ffff88083404fde8 ffffffff810d6248
ffff88083404fd68 0000000000000000 ffff8803b7dff800 000001ef000001ee
0000000000000000 0000000000000000 ffff880863bf8568 0000000000000000
Call Trace:
[<ffffffff810d6248>] cgroup_pidlist_start+0x258/0x550
[<ffffffff810cf66d>] cgroup_seqfile_start+0x1d/0x20
[<ffffffff8121f8ef>] kernfs_seq_start+0x5f/0xa0
[<ffffffff811cab76>] seq_read+0x166/0x380
[<ffffffff812200fd>] kernfs_fop_read+0x11d/0x180
[<ffffffff811a7398>] __vfs_read+0x18/0x50
[<ffffffff811a745d>] vfs_read+0x8d/0x150
[<ffffffff811a756f>] SyS_read+0x4f/0xb0
[<ffffffff818d4772>] system_call_fastpath+0x12/0x17
Fix it by moving the termination condition check inside css_set_lock.
@it->cur_task is now cleared after being put and @it->task_pos is
tested for termination instead of @it->cset_pos as they indicate the
same condition and @it->task_pos is what's being dereferenced.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Calvin Owens <calvinowens@fb.com>
Fixes: ed27b9f7a1 ("cgroup: don't hold css_set_rwsem across css task iteration")
Acked-by: Zefan Li <lizefan@huawei.com>
Now that interfaces for the major three controllers - cpu, memory, io
- are shaping up, there's no reason to have an option to force legacy
files to show up on the unified hierarchy for testing. Drop it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
The init sequence shouldn't fail short of bugs and even when it does
it's better to continue with the rest of initialization and we were
silently ignoring /proc/cgroups creation failure.
Drop the explicit error handling and wrap sysfs_create_mount_point(),
register_filesystem() and proc_create() with WARN_ON()s.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
pids controller is completely broken in that it uncharges when a task
exits allowing zombies to escape resource control. With the recent
updates, cgroup core now maintains cgroup association till task free
and pids controller can be fixed by uncharging on free instead of
exit.
This patch adds cgroup_subsys->free() method and update pids
controller to use it instead of ->exit() for uncharging.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Aleksa Sarai <cyphar@cyphar.com>
cgroup_exit() is called when a task exits and disassociates the
exiting task from its cgroups and half-attach it to the root cgroup.
This is unnecessary and undesirable.
No controller actually needs an exiting task to be disassociated with
non-root cgroups. Both cpu and perf_event controllers update the
association to the root cgroup from their exit callbacks just to keep
consistent with the cgroup core behavior.
Also, this disassociation makes it difficult to track resources held
by zombies or determine where the zombies came from. Currently, pids
controller is completely broken as it uncharges on exit and zombies
always escape the resource restriction. With cgroup association being
reset on exit, fixing it is pretty painful.
There's no reason to reset cgroup membership on exit. The zombie can
be removed from its css_set so that it doesn't show up on
"cgroup.procs" and thus can't be migrated or interfere with cgroup
removal. It can still pin and point to the css_set so that its cgroup
membership is maintained. This patch makes cgroup core keep zombies
associated with their cgroups at the time of exit.
* Previous patches decoupled populated_cnt tracking from css_set
lifetime, so a dying task can be simply unlinked from its css_set
while pinning and pointing to the css_set. This keeps css_set
association from task side alive while hiding it from "cgroup.procs"
and populated_cnt tracking. The css_set reference is dropped when
the task_struct is freed.
* ->exit() callback no longer needs the css arguments as the
associated css never changes once PF_EXITING is set. Removed.
* cpu and perf_events controllers no longer need ->exit() callbacks.
There's no reason to explicitly switch away on exit. The final
schedule out is enough. The callbacks are removed.
* On traditional hierarchies, nothing changes. "/proc/PID/cgroup"
still reports "/" for all zombies. On the default hierarchy,
"/proc/PID/cgroup" keeps reporting the cgroup that the task belonged
to at the time of exit. If the cgroup gets removed before the task
is reaped, " (deleted)" is appended.
v2: Build brekage due to missing dummy cgroup_free() when
!CONFIG_CGROUP fixed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
css_set_rwsem is the inner lock protecting css_sets and is accessed
from hot paths such as fork and exit. Internally, it has no reason to
be a rwsem or even mutex. There are no internal blocking operations
while holding it. This was rwsem because css task iteration used to
expose it to external iterator users. As the previous patch updated
css task iteration such that the locking is not leaked to its users,
there's no reason to keep it a rwsem.
This patch converts css_set_rwsem to a spinlock and rename it to
css_set_lock. It uses bh-safe operations as a planned usage needs to
access it from RCU callback context.
Signed-off-by: Tejun Heo <tj@kernel.org>
css_sets are synchronized through css_set_rwsem but the locking scheme
is kinda bizarre. The hot paths - fork and exit - have to write lock
the rwsem making the rw part pointless; furthermore, many readers
already hold cgroup_mutex.
One of the readers is css task iteration. It read locks the rwsem
over the entire duration of iteration. This leads to silly locking
behavior. When cpuset tries to migrate processes of a cgroup to a
different NUMA node, css_set_rwsem is held across the entire migration
attempt which can take a long time locking out forking, exiting and
other cgroup operations.
This patch updates css task iteration so that it locks css_set_rwsem
only while the iterator is being advanced. css task iteration
involves two levels - css_set and task iteration. As css_sets in use
are practically immutable, simply pinning the current one is enough
for resuming iteration afterwards. Task iteration is tricky as tasks
may leave their css_set while iteration is in progress. This is
solved by keeping track of active iterators and advancing them if
their next task leaves its css_set.
v2: put_task_struct() in css_task_iter_next() moved outside
css_set_rwsem. A later patch will add cgroup operations to
task_struct free path which may grab the same lock and this avoids
deadlock possibilities.
css_set_move_task() updated to use list_for_each_entry_safe() when
walking task_iters and advancing them. This is necessary as
advancing an iter may remove it from the list.
Signed-off-by: Tejun Heo <tj@kernel.org>
* Rename css_advance_task_iter() to css_task_iter_advance_css_set()
and make it clear it->task_pos too at the end of the iteration.
* Factor out css_task_iter_advance() from css_task_iter_next(). The
new function whines if called on a terminated iterator.
Except for the termination check, this is pure reorganization and
doesn't introduce any behavior changes. This will help the planned
locking update for css_task_iter.
Signed-off-by: Tejun Heo <tj@kernel.org>
A task is associated and disassociated with its css_set in three
places - during migration, after a new task is created and when a task
exits. The first is handled by cgroup_task_migrate() and the latter
two are open-coded.
These are similar operations and spreading them over multiple places
makes it harder to follow and update. This patch collects all task
css_set [dis]association operations into css_set_move_task().
While css_set_move_task() may check whether populated state needs to
be updated when not strictly necessary, the behavior is essentially
equivalent before and after this patch.
Signed-off-by: Tejun Heo <tj@kernel.org>
css task iteration will be updated to not leak cgroup internal locking
to iterator users. In preparation, update css_set and task lists to
be in chronological order.
For tasks, as migration path is already using list_splice_tail_init(),
only cgroup_enable_task_cg_lists() and cgroup_post_fork() need
updating. For css_sets, link_css_set() is the only place which needs
to be updated.
Signed-off-by: Tejun Heo <tj@kernel.org>
cgroup_destroy_locked() currently tests whether any css_sets are
associated to reject removal if the cgroup contains tasks. This works
because a css_set's refcnt converges with the number of tasks linked
to it and thus there's no css_set linked to a cgroup if it doesn't
have any live tasks.
To help tracking resource usage of zombie tasks, putting the ref of
css_set will be separated from disassociating the task from the
css_set which means that a cgroup may have css_sets linked to it even
when it doesn't have any live tasks.
This patch updates cgroup_destroy_locked() so that it tests
cgroup_is_populated(), which counts the number of populated css_sets,
instead of whether cgrp->cset_links is empty to determine whether the
cgroup is populated or not. This ensures that rmdirs won't be
incorrectly rejected for cgroups which only contain zombie tasks.
Signed-off-by: Tejun Heo <tj@kernel.org>
Currently, css_sets don't pin the associated cgroups. This is okay as
a cgroup with css_sets associated are not allowed to be removed;
however, to help resource tracking for zombie tasks, this is scheduled
to change such that a cgroup can be removed even when it has css_sets
associated as long as none of them are populated.
To ensure that a cgroup doesn't go away while css_sets are still
associated with it, make each associated css_set hold a reference on
the cgroup if non-root.
v2: Root cgroups are special and shouldn't be ref'd by css_sets.
Signed-off-by: Tejun Heo <tj@kernel.org>
Relocate cgroup_get(), cgroup_tryget() and cgroup_put() upwards. This
is pure code reorganization to prepare for future changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
To trigger release agent when the last task leaves the cgroup,
check_for_release() is called from put_css_set_locked(); however,
css_set being unlinked is being decoupled from task leaving the cgroup
and the correct condition to test is cgroup->nr_populated dropping to
zero which check_for_release() is already updated to test.
This patch moves check_for_release() invocation from
put_css_set_locked() to cgroup_update_populated().
Signed-off-by: Tejun Heo <tj@kernel.org>