Commit Graph

869 Commits

Author SHA1 Message Date
黄涛
93f7f04203 rk: meminfo: show real totalram 2013-03-12 22:27:56 +08:00
Todd Poynor
94225ab0be Merge linux-stable 3.0.28 into android-3.0
Change-Id: Iee820738e53627f5d0447a87ceff34443aa72786
Signed-off-by: Todd Poynor <toddpoynor@google.com>
2012-04-19 15:20:03 -07:00
Pravin B Shelar
a714cb9d08 proc-ns: use d_set_d_op() API to set dentry ops in proc_ns_instantiate().
commit 1b26c9b334 upstream.

The namespace cleanup path leaks a dentry which holds a reference count
on a network namespace.  Keeping that network namespace from being freed
when the last user goes away.  Leaving things like vlan devices in the
leaked network namespace.

If you use ip netns add for much real work this problem becomes apparent
pretty quickly.  It light testing the problem hides because frequently
you simply don't notice the leak.

Use d_set_d_op() so that DCACHE_OP_* flags are set correctly.

This issue exists back to 3.0.

Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Reported-by: Justin Pettit <jpettit@nicira.com>
Signed-off-by: Pravin B Shelar <pshelar@nicira.com>
Signed-off-by: Jesse Gross <jesse@nicira.com>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-04-02 09:27:18 -07:00
Andrea Arcangeli
5a3e1f550c mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode
commit 1a5a9906d4 upstream.

In some cases it may happen that pmd_none_or_clear_bad() is called with
the mmap_sem hold in read mode.  In those cases the huge page faults can
allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a
false positive from pmd_bad() that will not like to see a pmd
materializing as trans huge.

It's not khugepaged causing the problem, khugepaged holds the mmap_sem
in write mode (and all those sites must hold the mmap_sem in read mode
to prevent pagetables to go away from under them, during code review it
seems vm86 mode on 32bit kernels requires that too unless it's
restricted to 1 thread per process or UP builds).  The race is only with
the huge pagefaults that can convert a pmd_none() into a
pmd_trans_huge().

Effectively all these pmd_none_or_clear_bad() sites running with
mmap_sem in read mode are somewhat speculative with the page faults, and
the result is always undefined when they run simultaneously.  This is
probably why it wasn't common to run into this.  For example if the
madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page
fault, the hugepage will not be zapped, if the page fault runs first it
will be zapped.

Altering pmd_bad() not to error out if it finds hugepmds won't be enough
to fix this, because zap_pmd_range would then proceed to call
zap_pte_range (which would be incorrect if the pmd become a
pmd_trans_huge()).

The simplest way to fix this is to read the pmd in the local stack
(regardless of what we read, no need of actual CPU barriers, only
compiler barrier needed), and be sure it is not changing under the code
that computes its value.  Even if the real pmd is changing under the
value we hold on the stack, we don't care.  If we actually end up in
zap_pte_range it means the pmd was not none already and it was not huge,
and it can't become huge from under us (khugepaged locking explained
above).

All we need is to enforce that there is no way anymore that in a code
path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad
can run into a hugepmd.  The overhead of a barrier() is just a compiler
tweak and should not be measurable (I only added it for THP builds).  I
don't exclude different compiler versions may have prevented the race
too by caching the value of *pmd on the stack (that hasn't been
verified, but it wouldn't be impossible considering
pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines
and there's no external function called in between pmd_trans_huge and
pmd_none_or_clear_bad).

		if (pmd_trans_huge(*pmd)) {
			if (next-addr != HPAGE_PMD_SIZE) {
				VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
				split_huge_page_pmd(vma->vm_mm, pmd);
			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
				continue;
			/* fall through */
		}
		if (pmd_none_or_clear_bad(pmd))

Because this race condition could be exercised without special
privileges this was reported in CVE-2012-1179.

The race was identified and fully explained by Ulrich who debugged it.
I'm quoting his accurate explanation below, for reference.

====== start quote =======
      mapcount 0 page_mapcount 1
      kernel BUG at mm/huge_memory.c:1384!

    At some point prior to the panic, a "bad pmd ..." message similar to the
    following is logged on the console:

      mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7).

    The "bad pmd ..." message is logged by pmd_clear_bad() before it clears
    the page's PMD table entry.

        143 void pmd_clear_bad(pmd_t *pmd)
        144 {
    ->  145         pmd_ERROR(*pmd);
        146         pmd_clear(pmd);
        147 }

    After the PMD table entry has been cleared, there is an inconsistency
    between the actual number of PMD table entries that are mapping the page
    and the page's map count (_mapcount field in struct page). When the page
    is subsequently reclaimed, __split_huge_page() detects this inconsistency.

       1381         if (mapcount != page_mapcount(page))
       1382                 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
       1383                        mapcount, page_mapcount(page));
    -> 1384         BUG_ON(mapcount != page_mapcount(page));

    The root cause of the problem is a race of two threads in a multithreaded
    process. Thread B incurs a page fault on a virtual address that has never
    been accessed (PMD entry is zero) while Thread A is executing an madvise()
    system call on a virtual address within the same 2 MB (huge page) range.

               virtual address space
              .---------------------.
              |                     |
              |                     |
            .-|---------------------|
            | |                     |
            | |                     |<-- B(fault)
            | |                     |
      2 MB  | |/////////////////////|-.
      huge <  |/////////////////////|  > A(range)
      page  | |/////////////////////|-'
            | |                     |
            | |                     |
            '-|---------------------|
              |                     |
              |                     |
              '---------------------'

    - Thread A is executing an madvise(..., MADV_DONTNEED) system call
      on the virtual address range "A(range)" shown in the picture.

    sys_madvise
      // Acquire the semaphore in shared mode.
      down_read(&current->mm->mmap_sem)
      ...
      madvise_vma
        switch (behavior)
        case MADV_DONTNEED:
             madvise_dontneed
               zap_page_range
                 unmap_vmas
                   unmap_page_range
                     zap_pud_range
                       zap_pmd_range
                         //
                         // Assume that this huge page has never been accessed.
                         // I.e. content of the PMD entry is zero (not mapped).
                         //
                         if (pmd_trans_huge(*pmd)) {
                             // We don't get here due to the above assumption.
                         }
                         //
                         // Assume that Thread B incurred a page fault and
             .---------> // sneaks in here as shown below.
             |           //
             |           if (pmd_none_or_clear_bad(pmd))
             |               {
             |                 if (unlikely(pmd_bad(*pmd)))
             |                     pmd_clear_bad
             |                     {
             |                       pmd_ERROR
             |                         // Log "bad pmd ..." message here.
             |                       pmd_clear
             |                         // Clear the page's PMD entry.
             |                         // Thread B incremented the map count
             |                         // in page_add_new_anon_rmap(), but
             |                         // now the page is no longer mapped
             |                         // by a PMD entry (-> inconsistency).
             |                     }
             |               }
             |
             v
    - Thread B is handling a page fault on virtual address "B(fault)" shown
      in the picture.

    ...
    do_page_fault
      __do_page_fault
        // Acquire the semaphore in shared mode.
        down_read_trylock(&mm->mmap_sem)
        ...
        handle_mm_fault
          if (pmd_none(*pmd) && transparent_hugepage_enabled(vma))
              // We get here due to the above assumption (PMD entry is zero).
              do_huge_pmd_anonymous_page
                alloc_hugepage_vma
                  // Allocate a new transparent huge page here.
                ...
                __do_huge_pmd_anonymous_page
                  ...
                  spin_lock(&mm->page_table_lock)
                  ...
                  page_add_new_anon_rmap
                    // Here we increment the page's map count (starts at -1).
                    atomic_set(&page->_mapcount, 0)
                  set_pmd_at
                    // Here we set the page's PMD entry which will be cleared
                    // when Thread A calls pmd_clear_bad().
                  ...
                  spin_unlock(&mm->page_table_lock)

    The mmap_sem does not prevent the race because both threads are acquiring
    it in shared mode (down_read).  Thread B holds the page_table_lock while
    the page's map count and PMD table entry are updated.  However, Thread A
    does not synchronize on that lock.

====== end quote =======

[akpm@linux-foundation.org: checkpatch fixes]
Reported-by: Ulrich Obergfell <uobergfe@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Jones <davej@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Mark Salter <msalter@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-04-02 09:27:10 -07:00
Oleg Nesterov
0053779e04 proc: make sure mem_open() doesn't pin the target's memory
commit 6d08f2c713 upstream.

Once /proc/pid/mem is opened, the memory can't be released until
mem_release() even if its owner exits.

Change mem_open() to do atomic_inc(mm_count) + mmput(), this only
pins mm_struct. Change mem_rw() to do atomic_inc_not_zero(mm_count)
before access_remote_vm(), this verifies that this mm is still alive.

I am not sure what should mem_rw() return if atomic_inc_not_zero()
fails. With this patch it returns zero to match the "mm == NULL" case,
may be it should return -EINVAL like it did before e268337d.

Perhaps it makes sense to add the additional fatal_signal_pending()
check into the main loop, to ensure we do not hold this memory if
the target task was oom-killed.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-02-13 11:06:06 -08:00
Oleg Nesterov
b49767a65a proc: unify mem_read() and mem_write()
commit 572d34b946 upstream.

No functional changes, cleanup and preparation.

mem_read() and mem_write() are very similar. Move this code into the
new common helper, mem_rw(), which takes the additional "int write"
argument.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-02-13 11:06:06 -08:00
Oleg Nesterov
401f63716c proc: mem_release() should check mm != NULL
commit 71879d3cb3 upstream.

mem_release() can hit mm == NULL, add the necessary check.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-02-13 11:06:05 -08:00
Will Deacon
c2c9f54371 proc: clear_refs: do not clear reserved pages
commit 85e72aa538 upstream.

/proc/pid/clear_refs is used to clear the Referenced and YOUNG bits for
pages and corresponding page table entries of the task with PID pid, which
includes any special mappings inserted into the page tables in order to
provide things like vDSOs and user helper functions.

On ARM this causes a problem because the vectors page is mapped as a
global mapping and since ec706dab ("ARM: add a vma entry for the user
accessible vector page"), a VMA is also inserted into each task for this
page to aid unwinding through signals and syscall restarts.  Since the
vectors page is required for handling faults, clearing the YOUNG bit (and
subsequently writing a faulting pte) means that we lose the vectors page
*globally* and cannot fault it back in.  This results in a system deadlock
on the next exception.

To see this problem in action, just run:

	$ echo 1 > /proc/self/clear_refs

on an ARM platform (as any user) and watch your system hang.  I think this
has been the case since 2.6.37

This patch avoids clearing the aforementioned bits for reserved pages,
therefore leaving the vectors page intact on ARM.  Since reserved pages
are not candidates for swap, this change should not have any impact on the
usefulness of clear_refs.

Signed-off-by: Will Deacon <will.deacon@arm.com>
Reported-by: Moussa Ba <moussaba@micron.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Acked-by: Nicolas Pitre <nico@linaro.org>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2012-01-25 17:25:05 -08:00
Linus Torvalds
c8fec258e5 proc: clean up and fix /proc/<pid>/mem handling
commit e268337dfe upstream.

Jüri Aedla reported that the /proc/<pid>/mem handling really isn't very
robust, and it also doesn't match the permission checking of any of the
other related files.

This changes it to do the permission checks at open time, and instead of
tracking the process, it tracks the VM at the time of the open.  That
simplifies the code a lot, but does mean that if you hold the file
descriptor open over an execve(), you'll continue to read from the _old_
VM.

That is different from our previous behavior, but much simpler.  If
somebody actually finds a load where this matters, we'll need to revert
this commit.

I suspect that nobody will ever notice - because the process mapping
addresses will also have changed as part of the execve.  So you cannot
actually usefully access the fd across a VM change simply because all
the offsets for IO would have changed too.

Reported-by: Jüri Aedla <asd@ut.ee>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2012-01-25 17:24:55 -08:00
Martin Schwidefsky
3ec3f83aee fix cputime overflow in uptime_proc_show
commit c3e0ef9a29 upstream.

For 32-bit architectures using standard jiffies the idletime calculation
in uptime_proc_show will quickly overflow. It takes (2^32 / HZ) seconds
of idle-time, or e.g. 12.45 days with no load on a quad-core with HZ=1000.
Switch to 64-bit calculations.

Cc: Michael Abbott <michael.abbott@diamond.ac.uk>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2012-01-25 17:24:53 -08:00
Dima Zavin
dac306d896 Revert "proc: enable writing to /proc/pid/mem"
This reverts commit 198214a7ee.
2012-01-19 10:52:03 -08:00
Claudio Scordino
0c5a975756 fs/proc/meminfo.c: fix compilation error
commit b53fc7c297 upstream.

Fix the error message "directives may not be used inside a macro argument"
which appears when the kernel is compiled for the cris architecture.

Signed-off-by: Claudio Scordino <claudio@evidence.eu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-12-21 12:57:35 -08:00
Linus Torvalds
4f0bf01fab vfs: show O_CLOEXE bit properly in /proc/<pid>/fdinfo/<fd> files
commit 1117f72ea0 upstream.

The CLOEXE bit is magical, and for performance (and semantic) reasons we
don't actually maintain it in the file descriptor itself, but in a
separate bit array.  Which means that when we show f_flags, the CLOEXE
status is shown incorrectly: we show the status not as it is now, but as
it was when the file was opened.

Fix that by looking up the bit properly in the 'fdt->close_on_exec' bit
array.

Uli needs this in order to re-implement the pfiles program:

  "For normal file descriptors (not sockets) this was the last piece of
   information which wasn't available.  This is all part of my 'give
   Solaris users no reason to not switch' effort.  I intend to offer the
   code to the util-linux-ng maintainers."

Requested-by: Ulrich Drepper <drepper@akkadia.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-11-11 09:36:30 -08:00
Andrew Morton
b5e074a6ff /proc/self/numa_maps: restore "huge" tag for hugetlb vmas
commit fc360bd9cd upstream.

The display of the "huge" tag was accidentally removed in 29ea2f698 ("mm:
use walk_page_range() instead of custom page table walking code").

Reported-by: Stephen Hemminger <shemminger@vyatta.com>
Tested-by: Stephen Hemminger <shemminger@vyatta.com>
Reviewed-by: Stephen Wilson <wilsons@start.ca>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-11-11 09:36:15 -08:00
Colin Cross
2bb3e31015 Merge commit 'v3.0.8' into android-3.0 2011-10-27 15:01:19 -07:00
Dave Hansen
e2d598ab82 teach /proc/$pid/numa_maps about transparent hugepages
commit 32ef43848f upstream.

This is modeled after the smaps code.

It detects transparent hugepages and then does a single gather_stats()
for the page as a whole.  This has two benifits:
 1. It is more efficient since it does many pages in a single shot.
 2. It does not have to break down the huge page.

Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-10-03 11:40:38 -07:00
Dave Hansen
b879781180 break out numa_maps gather_pte_stats() checks
commit 3200a8aaab upstream.

gather_pte_stats() does a number of checks on a target page
to see whether it should even be considered for statistics.
This breaks that code out in to a separate function so that
we can use it in the transparent hugepage case in the next
patch.

Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com>
Acked-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Christoph Lameter <cl@gentwo.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-10-03 11:40:38 -07:00
Dave Hansen
a19dcc7476 make /proc/$pid/numa_maps gather_stats() take variable page size
commit eb4866d006 upstream.

We need to teach the numa_maps code about transparent huge pages.  The
first step is to teach gather_stats() that the pte it is dealing with
might represent more than one page.

Note that will we use this in a moment for transparent huge pages since
they have use a single pmd_t which _acts_ as a "surrogate" for a bunch
of smaller pte_t's.

I'm a _bit_ unhappy that this interface counts in hugetlbfs page sizes
for hugetlbfs pages and PAGE_SIZE for normal pages.  That means that to
figure out how many _bytes_ "dirty=1" means, you must first know the
hugetlbfs page size.  That's easier said than done especially if you
don't have visibility in to the mount.

But, that's probably a discussion for another day especially since it
would change behavior to fix it.  But, just in case anyone wonders why
this patch only passes a '1' in the hugetlb case...

Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-10-03 11:40:38 -07:00
Colin Cross
9abd59b0df Merge commit 'v3.0.1' into android-3.0 2011-08-10 18:07:59 -07:00
Vasiliy Kulikov
8cd3f19d83 proc: fix a race in do_io_accounting()
commit 293eb1e777 upstream.

If an inode's mode permits opening /proc/PID/io and the resulting file
descriptor is kept across execve() of a setuid or similar binary, the
ptrace_may_access() check tries to prevent using this fd against the
task with escalated privileges.

Unfortunately, there is a race in the check against execve().  If
execve() is processed after the ptrace check, but before the actual io
information gathering, io statistics will be gathered from the
privileged process.  At least in theory this might lead to gathering
sensible information (like ssh/ftp password length) that wouldn't be
available otherwise.

Holding task->signal->cred_guard_mutex while gathering the io
information should protect against the race.

The order of locking is similar to the one inside of ptrace_attach():
first goes cred_guard_mutex, then lock_task_sighand().

Signed-off-by: Vasiliy Kulikov <segoon@openwall.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-08-04 21:58:40 -07:00
Dima Zavin
814cdea670 Merge commit 'v3.0-rc6' into android-3.0 2011-07-07 17:55:44 -07:00
Colin Cross
e55d4fa967 Merge commit 'v3.0-rc5' into android-3.0 2011-06-29 13:54:42 -07:00
Vasiliy Kulikov
1d1221f375 proc: restrict access to /proc/PID/io
/proc/PID/io may be used for gathering private information.  E.g.  for
openssh and vsftpd daemons wchars/rchars may be used to learn the
precise password length.  Restrict it to processes being able to ptrace
the target process.

ptrace_may_access() is needed to prevent keeping open file descriptor of
"io" file, executing setuid binary and gathering io information of the
setuid'ed process.

Signed-off-by: Vasiliy Kulikov <segoon@openwall.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-28 09:39:11 -07:00
Al Viro
1aec7036d0 proc_sys_permission() is OK in RCU mode
nothing blocking there, since all instances of sysctl
->permissions() method are non-blocking - both of them,
that is.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2011-06-20 10:45:25 -04:00
Al Viro
cf12791116 proc_fd_permission() is doesn't need to bail out in RCU mode
nothing blocking except generic_permission()

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2011-06-20 10:44:50 -04:00