# HG changeset patch
# User Jeremy Fitzhardinge <jeremy@xensource.com>
# Date 1199317360 28800
# Node ID ba0ec40a50a7aef1a3153cea124c35e261f5a2df
# Parent c45c263179cb78284b6b869c574457df088027d1
x86: page.h: unify constants
There are many constants which are shared by 32 and 64-bit.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
we need to know whether RDTSC is synchronous or not.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
rdtsc is now speculation-safe, so no need for the sync variants of
the APIs.
[ mingo@elte.hu: removed the nsec_barrier() complication. ]
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
map vsyscalls early enough. This is important if a __vsyscall_fn
function is used by other kernel code too.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
rdtsc_barrier() is a new barrier primitive that stops RDTSC speculation
to avoid races with timer interrupts on other CPUs.
It expands either to LFENCE (for Intel CPUs) or MFENCE (for
AMD CPUs) which stops RDTSC on all currently known microarchitectures
that implement SSE. On CPUs without SSE there is generally no RDTSC
speculation.
[ mingo@elte.hu: renamed it to rdtsc_barrier() and made it x86-only ]
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Moving things out of processor.h is always a good thing.
Also needed to avoid include loop in later patch.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
According to Intel RDTSC can be always synchronized with LFENCE
on all current CPUs. Implement the necessary CPUID bit for that.
It is unclear yet if that is true for all future CPUs too,
but if there's another way the kernel can be always updated.
Cc: asit.k.mallick@intel.com
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
According to AMD RDTSC can be synchronized through MFENCE.
Implement the necessary CPUID bit for that.
Cc: andreas.herrmann3@amd.com
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The core patching code for paravirt is sufficiently different
among i386 and x86_64, and we move them to specific files.
Signed-off-by: Glauber de Oliveira Costa <gcosta@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
x86_64 needs a potentially larger clobber list than i386, due to its calling
convention. So we add more CLBR_ defines for it.
Note that CLBR_ANY is different for each of the architectures, since it comprises
the notion of "All call clobbers in this architecture"
Signed-off-by: Glauber de Oliveira Costa <gcosta@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Since the advent of ticket locking, CLI_STRING, STI_STRING, and friends
are not used anymore. They can now be safely deleted.
Signed-off-by: Glauber de Oliveira Costa <gcosta@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch adds paravirt hook for swapgs operation, which is a privileged
operation in x86_64.
Signed-off-by: Glauber de Oliveira Costa <gcosta@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
i386 has a macro GET_CR0_INTO_EAX, used in early trap handling code.
x86_64 has similar needs, only it needs to put cr2 into rcx. We provide
a macro for such task, in the same way
Signed-off-by: Glauber de Oliveira Costa <gcosta@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch changes the irq handling function definitions
in paravirt.h (like raw_local_irq_disable) to accomodate for x86_64.
The differences are in the calling convention.
Signed-off-by: Glauber de Oliveira Costa <gcosta@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch adjust the paravirt macros used in assembly code
to accomodate for x86_64 as well.
Signed-off-by: Glauber de Oliveira Costa <gcosta@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
To account for differences in x86_64, we change the macros that
create raw instances of the paravirt_patch_site struct.
We need to align 64-pointers to 64-bit boundaries, so we add an alignment
directive. Also, we need to make room for a word-sized pointer,
instead of a fixed 32-bit one
Signed-off-by: Glauber de Oliveira Costa <gcosta@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch adds a field in pv_cpu_ops for a paravirtualized hook
for rdtscp, needed for x86_64.
Signed-off-by: Glauber de Oliveira Costa <gcosta@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
write_tsc() does not need to be enclosed in any paravirt closure,
as it uses wrmsr(). So we rip off the duplicate in msr.h
and the definition from paravirt.h
Signed-off-by: Glauber de Oliveira Costa <gcosta@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch adjust the PVOP_VCALL and PVOP_CALL macros to
work with x86_64. It has a different calling convention, and
we use auxiliary macros to account for both calling conventions
as cleanly as possible
Comments are adjusted accordingly.
Signed-off-by: Glauber de Oliveira Costa <gcosta@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Establish the user API for sending a user-defined signal to the traced task on a BTS buffer overflow.
This should complete the user API for the BTS ptrace extension.
The patches so far implement wrap-around overflow handling as is needed for debugging.
The remaining open is another overflow handling mechanism that sends a signal to the traced task on a buffer overflow.
This will take some more time from my side.
Since, from a user perspective, this occurs behind the scenes, the patch set should already be useful. More features may/will be added on top of it (overflow signal, pageable back-up buffers, kernel tracing, core file support, profiling, ...).
Signed-off-by: Markus Metzger <markus.t.metzger@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pass the buffer size for (most) ptrace commands that pass user-allocated buffers and check that size before accessing the buffer. Unfortunately, PTRACE_BTS_GET already uses all 4 parameters.
Commands that access user buffers return the number of bytes or records read or written.
Signed-off-by: Markus Metzger <markus.t.metzger@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>