The addition of CONFIG_SECURITY_DMESG_RESTRICT resulted in a build
failure when CONFIG_PRINTK=n. This is because the capabilities code
which used the new option was built even though the variable in question
didn't exist.
The patch here fixes this by moving the capabilities checks out of the
LSM and into the caller. All (known) LSMs should have been calling the
capabilities hook already so it actually makes the code organization
better to eliminate the hook altogether.
Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kernel syslog contains debugging information that is often useful
during exploitation of other vulnerabilities, such as kernel heap
addresses. Rather than futilely attempt to sanitize hundreds (or
thousands) of printk statements and simultaneously cripple useful
debugging functionality, it is far simpler to create an option that
prevents unprivileged users from reading the syslog.
This patch, loosely based on grsecurity's GRKERNSEC_DMESG, creates the
dmesg_restrict sysctl. When set to "0", the default, no restrictions are
enforced. When set to "1", only users with CAP_SYS_ADMIN can read the
kernel syslog via dmesg(8) or other mechanisms.
[akpm@linux-foundation.org: explain the config option in kernel.txt]
Signed-off-by: Dan Rosenberg <drosenberg@vsecurity.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Eugene Teo <eugeneteo@kernel.org>
Acked-by: Kees Cook <kees.cook@canonical.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
policy->name is a substring of policy->hname, if prefix is not NULL, it will
allocted strlen(prefix) + strlen(name) + 3 bytes to policy->hname in policy_init().
use kzfree(ns->base.name) will casue memory leak if alloc_namespace() failed.
Signed-off-by: Zhitong Wang <zhitong.wangzt@alibaba-inc.com>
Signed-off-by: John Johansen <john.johansen@canonical.com>
Signed-off-by: James Morris <jmorris@namei.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6: (52 commits)
split invalidate_inodes()
fs: skip I_FREEING inodes in writeback_sb_inodes
fs: fold invalidate_list into invalidate_inodes
fs: do not drop inode_lock in dispose_list
fs: inode split IO and LRU lists
fs: switch bdev inode bdi's correctly
fs: fix buffer invalidation in invalidate_list
fsnotify: use dget_parent
smbfs: use dget_parent
exportfs: use dget_parent
fs: use RCU read side protection in d_validate
fs: clean up dentry lru modification
fs: split __shrink_dcache_sb
fs: improve DCACHE_REFERENCED usage
fs: use percpu counter for nr_dentry and nr_dentry_unused
fs: simplify __d_free
fs: take dcache_lock inside __d_path
fs: do not assign default i_ino in new_inode
fs: introduce a per-cpu last_ino allocator
new helper: ihold()
...
* ima-memory-use-fixes:
IMA: fix the ToMToU logic
IMA: explicit IMA i_flag to remove global lock on inode_delete
IMA: drop refcnt from ima_iint_cache since it isn't needed
IMA: only allocate iint when needed
IMA: move read counter into struct inode
IMA: use i_writecount rather than a private counter
IMA: use inode->i_lock to protect read and write counters
IMA: convert internal flags from long to char
IMA: use unsigned int instead of long for counters
IMA: drop the inode opencount since it isn't needed for operation
IMA: use rbtree instead of radix tree for inode information cache
Current logic looks like this:
rc = ima_must_measure(NULL, inode, MAY_READ, FILE_CHECK);
if (rc < 0)
goto out;
if (mode & FMODE_WRITE) {
if (inode->i_readcount)
send_tomtou = true;
goto out;
}
if (atomic_read(&inode->i_writecount) > 0)
send_writers = true;
Lets assume we have a policy which states that all files opened for read
by root must be measured.
Lets assume the file has permissions 777.
Lets assume that root has the given file open for read.
Lets assume that a non-root process opens the file write.
The non-root process will get to ima_counts_get() and will check the
ima_must_measure(). Since it is not supposed to measure it will goto
out.
We should check the i_readcount no matter what since we might be causing
a ToMToU voilation!
This is close to correct, but still not quite perfect. The situation
could have been that root, which was interested in the mesurement opened
and closed the file and another process which is not interested in the
measurement is the one holding the i_readcount ATM. This is just overly
strict on ToMToU violations, which is better than not strict enough...
Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently for every removed inode IMA must take a global lock and search
the IMA rbtree looking for an associated integrity structure. Instead
we explicitly mark an inode when we add an integrity structure so we
only have to take the global lock and do the removal if it exists.
Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since finding a struct ima_iint_cache requires a valid struct inode, and
the struct ima_iint_cache is supposed to have the same lifetime as a
struct inode (technically they die together but don't need to be created
at the same time) we don't have to worry about the ima_iint_cache
outliving or dieing before the inode. So the refcnt isn't useful. Just
get rid of it and free the structure when the inode is freed.
Signed-off-by: Eric Paris <eapris@redhat.com>
Acked-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
IMA always allocates an integrity structure to hold information about
every inode, but only needed this structure to track the number of
readers and writers currently accessing a given inode. Since that
information was moved into struct inode instead of the integrity struct
this patch stops allocating the integrity stucture until it is needed.
Thus greatly reducing memory usage.
Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
IMA currently allocated an inode integrity structure for every inode in
core. This stucture is about 120 bytes long. Most files however
(especially on a system which doesn't make use of IMA) will never need
any of this space. The problem is that if IMA is enabled we need to
know information about the number of readers and the number of writers
for every inode on the box. At the moment we collect that information
in the per inode iint structure and waste the rest of the space. This
patch moves those counters into the struct inode so we can eventually
stop allocating an IMA integrity structure except when absolutely
needed.
This patch does the minimum needed to move the location of the data.
Further cleanups, especially the location of counter updates, may still
be possible.
Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
IMA tracks the number of struct files which are holding a given inode
readonly and the number which are holding the inode write or r/w. It
needs this information so when a new reader or writer comes in it can
tell if this new file will be able to invalidate results it already made
about existing files.
aka if a task is holding a struct file open RO, IMA measured the file
and recorded those measurements and then a task opens the file RW IMA
needs to note in the logs that the old measurement may not be correct.
It's called a "Time of Measure Time of Use" (ToMToU) issue. The same is
true is a RO file is opened to an inode which has an open writer. We
cannot, with any validity, measure the file in question since it could
be changing.
This patch attempts to use the i_writecount field to track writers. The
i_writecount field actually embeds more information in it's value than
IMA needs but it should work for our purposes and allow us to shrink the
struct inode even more.
Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently IMA used the iint->mutex to protect the i_readcount and
i_writecount. This patch uses the inode->i_lock since we are going to
start using in inode objects and that is the most appropriate lock.
Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The IMA flags is an unsigned long but there is only 1 flag defined.
Lets save a little space and make it a char. This packs nicely next to
the array of u8's.
Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently IMA uses 2 longs in struct inode. To save space (and as it
seems impossible to overflow 32 bits) we switch these to unsigned int.
The switch to unsigned does require slightly different checks for
underflow, but it isn't complex.
Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The opencount was used to help debugging to make sure that everything
which created a struct file also correctly made the IMA calls. Since we
moved all of that into the VFS this isn't as necessary. We should be
able to get the same amount of debugging out of just the reader and
write count.
Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The IMA code needs to store the number of tasks which have an open fd
granting permission to write a file even when IMA is not in use. It
needs this information in order to be enabled at a later point in time
without losing it's integrity garantees.
At the moment that means we store a little bit of data about every inode
in a cache. We use a radix tree key'd on the inode's memory address.
Dave Chinner pointed out that a radix tree is a terrible data structure
for such a sparse key space. This patch switches to using an rbtree
which should be more efficient.
Bug report from Dave:
"I just noticed that slabtop was reporting an awfully high usage of
radix tree nodes:
OBJS ACTIVE USE OBJ SIZE SLABS OBJ/SLAB CACHE SIZE NAME
4200331 2778082 66% 0.55K 144839 29 2317424K radix_tree_node
2321500 2060290 88% 1.00K 72581 32 2322592K xfs_inode
2235648 2069791 92% 0.12K 69864 32 279456K iint_cache
That is, 2.7M radix tree nodes are allocated, and the cache itself is
consuming 2.3GB of RAM. I know that the XFS inodei caches are indexed
by radix tree node, but for 2 million cached inodes that would mean a
density of 1 inode per radix tree node, which for a system with 16M
inodes in the filsystems is an impossibly low density. The worst I've
seen in a production system like kernel.org is about 20-25% density,
which would mean about 150-200k radix tree nodes for that many inodes.
So it's not the inode cache.
So I looked up what the iint_cache was. It appears to used for
storing per-inode IMA information, and uses a radix tree for indexing.
It uses the *address* of the struct inode as the indexing key. That
means the key space is extremely sparse - for XFS the struct inode
addresses are approximately 1000 bytes apart, which means the closest
the radix tree index keys get is ~1000. Which means that there is a
single entry per radix tree leaf node, so the radix tree is using
roughly 550 bytes for every 120byte structure being cached. For the
above example, it's probably wasting close to 1GB of RAM...."
Reported-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All callers take dcache_lock just around the call to __d_path, so
take the lock into it in preparation of getting rid of dcache_lock.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Instead of always assigning an increasing inode number in new_inode
move the call to assign it into those callers that actually need it.
For now callers that need it is estimated conservatively, that is
the call is added to all filesystems that do not assign an i_ino
by themselves. For a few more filesystems we can avoid assigning
any inode number given that they aren't user visible, and for others
it could be done lazily when an inode number is actually needed,
but that's left for later patches.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* 'llseek' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/bkl:
vfs: make no_llseek the default
vfs: don't use BKL in default_llseek
llseek: automatically add .llseek fop
libfs: use generic_file_llseek for simple_attr
mac80211: disallow seeks in minstrel debug code
lirc: make chardev nonseekable
viotape: use noop_llseek
raw: use explicit llseek file operations
ibmasmfs: use generic_file_llseek
spufs: use llseek in all file operations
arm/omap: use generic_file_llseek in iommu_debug
lkdtm: use generic_file_llseek in debugfs
net/wireless: use generic_file_llseek in debugfs
drm: use noop_llseek
/selinux/policy allows a user to copy the policy back out of the kernel.
This patch allows userspace to actually mmap that file and use it directly.
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>