Merge emailed kgdb dmesg fixups patches from Anton Vorontsov:
"The dmesg command appears to be broken after the printk rework. The
old logic in the kdb code makes no sense in terms of current
printk/logging storage format, and KDB simply hangs forever upon
entering 'dmesg' command.
The first patch revives the command by switching to kmsg_dumper
iterator. As a side-effect, the code is now much more simpler.
A few changes were needed in the printk.c: we needed unlocked variant
of the kmsg_dumper iterator, but these can surely wait for 3.6.
It's probably too late even for the first patch to go to 3.5, but I'll
try to convince otherwise. :-) Here we go:
- The current code is broken for sure, and has no hope to work at
all. It is a regression
- The new code works for me, and probably works for everyone else;
- If it compiles (and I urge everyone to compile-test it on your
setup), it hardly can make things worse."
* Merge emailed patches from Anton Vorontsov: (4 commits)
kdb: Switch to nolock variants of kmsg_dump functions
printk: Implement some unlocked kmsg_dump functions
printk: Remove kdb_syslog_data
kdb: Revive dmesg command
The locked variants are prone to deadlocks (suppose we got to the
debugger w/ the logbuf lock held), so let's switch to nolock variants.
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If used from KDB, the locked variants are prone to deadlocks (suppose we
got to the debugger w/ the logbuf lock held).
So, we have to implement a few routines that grab no logbuf lock.
Yet we don't need these functions in modules, so we don't export them.
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kgdb dmesg command is broken after the printk rework. The old logic
in kdb code makes no sense in terms of current printk/logging storage
format, and KDB simply hangs forever.
This patch revives the command by switching to kmsg_dumper iterator.
The code is now much more simpler and shorter.
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit a7a20d1039 ("sd: limit the scope of the async probe domain")
make the SCSI device probing run device discovery in it's own async
domain.
However, as a result, the partition detection was no longer synchronized
by async_synchronize_full() (which, despite the name, only synchronizes
the global async space, not all of them). Which in turn meant that
"wait_for_device_probe()" would not wait for the SCSI partitions to be
parsed.
And "wait_for_device_probe()" was what the boot time init code relied on
for mounting the root filesystem.
Now, most people never noticed this, because not only is it
timing-dependent, but modern distributions all use initrd. So the root
filesystem isn't actually on a disk at all. And then before they
actually mount the final disk filesystem, they will have loaded the
scsi-wait-scan module, which not only does the expected
wait_for_device_probe(), but also does scsi_complete_async_scans().
[ Side note: scsi_complete_async_scans() had also been partially broken,
but that was fixed in commit 43a8d39d01 ("fix async probe
regression"), so that same commit a7a20d1039 had actually broken
setups even if you used scsi-wait-scan explicitly ]
Solve this problem by just moving the scsi_complete_async_scans() call
into wait_for_device_probe(). Everybody who wants to wait for device
probing to finish really wants the SCSI probing to complete, so there's
no reason not to do this.
So now "wait_for_device_probe()" really does what the name implies, and
properly waits for device probing to finish. This also removes the now
unnecessary extra calls to scsi_complete_async_scans().
Reported-and-tested-by: Artem S. Tashkinov <t.artem@mailcity.com>
Cc: Dan Williams <dan.j.williams@gmail.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: James Bottomley <jbottomley@parallels.com>
Cc: Borislav Petkov <bp@amd64.org>
Cc: linux-scsi <linux-scsi@vger.kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
One more time/ntp fix pulled from Ingo Molnar.
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
ntp: Fix STA_INS/DEL clearing bug
Pull RCU, perf, and scheduler fixes from Ingo Molnar.
The RCU fix is a revert for an optimization that could cause deadlocks.
One of the scheduler commits (164c33c6ad "sched: Fix fork() error path
to not crash") is correct but not complete (some architectures like Tile
are not covered yet) - the resulting additional fixes are still WIP and
Ingo did not want to delay these pending fixes. See this thread on
lkml:
[PATCH] fork: fix error handling in dup_task()
The perf fixes are just trivial oneliners.
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Revert "rcu: Move PREEMPT_RCU preemption to switch_to() invocation"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf kvm: Fix segfault with report and mixed guestmount use
perf kvm: Fix regression with guest machine creation
perf script: Fix format regression due to libtraceevent merge
ring-buffer: Fix accounting of entries when removing pages
ring-buffer: Fix crash due to uninitialized new_pages list head
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
MAINTAINERS/sched: Update scheduler file pattern
sched/nohz: Rewrite and fix load-avg computation -- again
sched: Fix fork() error path to not crash
Pull the leap second fixes from Thomas Gleixner:
"It's a rather large series, but well discussed, refined and reviewed.
It got a massive testing by John, Prarit and tip.
In theory we could split it into two parts. The first two patches
f55a6faa38: hrtimer: Provide clock_was_set_delayed()
4873fa070a: timekeeping: Fix leapsecond triggered load spike issue
are merely preventing the stuff loops forever issues, which people
have observed.
But there is no point in delaying the other 4 commits which achieve
full correctness into 3.6 as they are tagged for stable anyway. And I
rather prefer to have the full fixes merged in bulk than a "prevent
the observable wreckage and deal with the hidden fallout later"
approach."
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
hrtimer: Update hrtimer base offsets each hrtimer_interrupt
timekeeping: Provide hrtimer update function
hrtimers: Move lock held region in hrtimer_interrupt()
timekeeping: Maintain ktime_t based offsets for hrtimers
timekeeping: Fix leapsecond triggered load spike issue
hrtimer: Provide clock_was_set_delayed()
"no other files mapped" requirement from my previous patch (c/r: prctl:
update prctl_set_mm_exe_file() after mm->num_exe_file_vmas removal) is too
paranoid, it forbids operation even if there mapped one shared-anon vma.
Let's check that current mm->exe_file already unmapped, in this case
exe_file symlink already outdated and its changing is reasonable.
Plus, this patch fixes exit code in case operation success.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Reported-by: Cyrill Gorcunov <gorcunov@openvz.org>
Tested-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The update of the hrtimer base offsets on all cpus cannot be made
atomically from the timekeeper.lock held and interrupt disabled region
as smp function calls are not allowed there.
clock_was_set(), which enforces the update on all cpus, is called
either from preemptible process context in case of do_settimeofday()
or from the softirq context when the offset modification happened in
the timer interrupt itself due to a leap second.
In both cases there is a race window for an hrtimer interrupt between
dropping timekeeper lock, enabling interrupts and clock_was_set()
issuing the updates. Any interrupt which arrives in that window will
see the new time but operate on stale offsets.
So we need to make sure that an hrtimer interrupt always sees a
consistent state of time and offsets.
ktime_get_update_offsets() allows us to get the current monotonic time
and update the per cpu hrtimer base offsets from hrtimer_interrupt()
to capture a consistent state of monotonic time and the offsets. The
function replaces the existing ktime_get() calls in hrtimer_interrupt().
The overhead of the new function vs. ktime_get() is minimal as it just
adds two store operations.
This ensures that any changes to realtime or boottime offsets are
noticed and stored into the per-cpu hrtimer base structures, prior to
any hrtimer expiration and guarantees that timers are not expired early.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Prarit Bhargava <prarit@redhat.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/1341960205-56738-8-git-send-email-johnstul@us.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
To finally fix the infamous leap second issue and other race windows
caused by functions which change the offsets between the various time
bases (CLOCK_MONOTONIC, CLOCK_REALTIME and CLOCK_BOOTTIME) we need a
function which atomically gets the current monotonic time and updates
the offsets of CLOCK_REALTIME and CLOCK_BOOTTIME with minimalistic
overhead. The previous patch which provides ktime_t offsets allows us
to make this function almost as cheap as ktime_get() which is going to
be replaced in hrtimer_interrupt().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Prarit Bhargava <prarit@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Link: http://lkml.kernel.org/r/1341960205-56738-7-git-send-email-johnstul@us.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The timekeeping code misses an update of the hrtimer subsystem after a
leap second happened. Due to that timers based on CLOCK_REALTIME are
either expiring a second early or late depending on whether a leap
second has been inserted or deleted until an operation is initiated
which causes that update. Unless the update happens by some other
means this discrepancy between the timekeeping and the hrtimer data
stays forever and timers are expired either early or late.
The reported immediate workaround - $ data -s "`date`" - is causing a
call to clock_was_set() which updates the hrtimer data structures.
See: http://www.sheeri.com/content/mysql-and-leap-second-high-cpu-and-fix
Add the missing clock_was_set() call to update_wall_time() in case of
a leap second event. The actual update is deferred to softirq context
as the necessary smp function call cannot be invoked from hard
interrupt context.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Reported-by: Jan Engelhardt <jengelh@inai.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Prarit Bhargava <prarit@redhat.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/1341960205-56738-3-git-send-email-johnstul@us.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
clock_was_set() cannot be called from hard interrupt context because
it calls on_each_cpu().
For fixing the widely reported leap seconds issue it is necessary to
call it from hard interrupt context, i.e. the timer tick code, which
does the timekeeping updates.
Provide a new function which denotes it in the hrtimer cpu base
structure of the cpu on which it is called and raise the hrtimer
softirq. We then execute the clock_was_set() notificiation from
softirq context in run_hrtimer_softirq(). The hrtimer softirq is
rarely used, so polling the flag there is not a performance issue.
[ tglx: Made it depend on CONFIG_HIGH_RES_TIMERS. We really should get
rid of all this ifdeffery ASAP ]
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Reported-by: Jan Engelhardt <jengelh@inai.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Prarit Bhargava <prarit@redhat.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/1341960205-56738-2-git-send-email-johnstul@us.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull printk fixes from Greg Kroah-Hartman:
"Here are some more printk fixes for 3.5-rc6. They resolve all known
outstanding issues with the printk changes that have been happening.
They have been tested by the people reporting the problems.
This hopefully should be it for the printk stuff for 3.5-final.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>"
* tag 'driver-core-3.5-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core:
kmsg: merge continuation records while printing
kmsg: /proc/kmsg - support reading of partial log records
kmsg: make sure all messages reach a newly registered boot console
kmsg: properly handle concurrent non-blocking read() from /proc/kmsg
kmsg: add the facility number to the syslog prefix
kmsg: escape the backslash character while exporting data
printk: replacing the raw_spin_lock/unlock with raw_spin_lock/unlock_irq
In (the unlikely) case our continuation merge buffer is busy, we unfortunately
can not merge further continuation printk()s into a single record and have to
store them separately, which leads to split-up output of these lines when they
are printed.
Add some flags about newlines and prefix existence to these records and try to
reconstruct the full line again, when the separated records are printed.
Reported-By: Michael Neuling <mikey@neuling.org>
Cc: Dave Jones <davej@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Tested-By: Michael Neuling <mikey@neuling.org>
Signed-off-by: Kay Sievers <kay@vrfy.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Restore support for partial reads of any size on /proc/kmsg, in case the
supplied read buffer is smaller than the record size.
Some people seem to think is is ia good idea to run:
$ dd if=/proc/kmsg bs=1 of=...
as a klog bridge.
Resolves-bug: https://bugzilla.kernel.org/show_bug.cgi?id=44211
Reported-by: Jukka Ollila <jiiksteri@gmail.com>
Signed-off-by: Kay Sievers <kay@vrfy.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
48ddbe1946 "cgroup: make css->refcnt clearing on cgroup removal
optional" allowed a css to linger after the associated cgroup is
removed. As a css holds a reference on the cgroup's dentry, it means
that cgroup dentries may linger for a while.
Destroying a superblock which has dentries with positive refcnts is a
critical bug and triggers BUG() in vfs code. As each cgroup dentry
holds an s_active reference, any lingering cgroup has both its dentry
and the superblock pinned and thus preventing premature release of
superblock.
Unfortunately, after 48ddbe1946, there's a small window while
releasing a cgroup which is directly under the root of the hierarchy.
When a cgroup directory is released, vfs layer first deletes the
corresponding dentry and then invokes dput() on the parent, which may
recurse further, so when a cgroup directly below root cgroup is
released, the cgroup is first destroyed - which releases the s_active
it was holding - and then the dentry for the root cgroup is dput().
This creates a window where the root dentry's refcnt isn't zero but
superblock's s_active is. If umount happens before or during this
window, vfs will see the root dentry with non-zero refcnt and trigger
BUG().
Before 48ddbe1946, this problem didn't exist because the last dentry
reference was guaranteed to be put synchronously from rmdir(2)
invocation which holds s_active around the whole process.
Fix it by holding an extra superblock->s_active reference across
dput() from css release, which is the dput() path added by 48ddbe1946
and the only one which doesn't hold an extra s_active ref across the
final cgroup dput().
Signed-off-by: Tejun Heo <tj@kernel.org>
LKML-Reference: <4FEEA5CB.8070809@huawei.com>
Reported-by: shyju pv <shyju.pv@huawei.com>
Tested-by: shyju pv <shyju.pv@huawei.com>
Cc: Sasha Levin <levinsasha928@gmail.com>
Acked-by: Li Zefan <lizefan@huawei.com>
This reverts commit fa980ca87d. The
commit was an attempt to fix a race condition where a cgroup hierarchy
may be unmounted with positive dentry reference on root cgroup. While
the commit made the race condition slightly more difficult to trigger,
the race was still there and could be reliably triggered using a
different test case.
Revert the incorrect fix. The next commit will describe the race and
fix it correctly.
Signed-off-by: Tejun Heo <tj@kernel.org>
LKML-Reference: <4FEEA5CB.8070809@huawei.com>
Reported-by: shyju pv <shyju.pv@huawei.com>
Cc: Sasha Levin <levinsasha928@gmail.com>
Acked-by: Li Zefan <lizefan@huawei.com>
We suppress printing kmsg records to the console, which are already printed
immediately while we have received their fragments.
Newly registered boot consoles print the entire kmsg buffer during
registration. Clear the console-suppress flag after we skipped the record
during its first storage, so any later print will see these records as usual.
Signed-off-by: Kay Sievers <kay@vrfy.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>