This patch introduces the multi-buffer crypto daemon which is responsible
for submitting crypto jobs in a work queue to the responsible multi-buffer
crypto algorithm. The idea of the multi-buffer algorihtm is to put
data streams from multiple jobs in a wide (AVX2) register and then
take advantage of SIMD instructions to do crypto computation on several
buffers simultaneously.
The multi-buffer crypto daemon is also responsbile for flushing the
remaining buffers to complete the computation if no new buffers arrive
for a while.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Use skcipher_givcrypt_cast(crypto_dequeue_request(queue)) instead, which
does the same thing in much cleaner way. The skcipher_givcrypt_cast()
actually uses container_of() instead of messing around with offsetof()
too.
Signed-off-by: Marek Vasut <marex@denx.de>
Reported-by: Arnd Bergmann <arnd@arndb.de>
Cc: Pantelis Antoniou <panto@antoniou-consulting.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Although the existing hash walk interface has already been used
by a number of ahash crypto drivers, it turns out that none of
them were really asynchronous. They were all essentially polling
for completion.
That's why nobody has noticed until now that the walk interface
couldn't work with a real asynchronous driver since the memory
is mapped using kmap_atomic.
As we now have a use-case for a real ahash implementation on x86,
this patch creates a minimal ahash walk interface. Basically it
just calls kmap instead of kmap_atomic and does away with the
crypto_yield call. Real ahash crypto drivers don't need to yield
since by definition they won't be hogging the CPU.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add crypto_[un]register_shashes() to allow simplifying init/exit code of shash
crypto modules that register multiple algorithms.
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
We lookup algorithms with crypto_alg_mod_lookup() when instantiating via
crypto_add_alg(). However, algorithms that are wrapped by an IV genearator
(e.g. aead or genicv type algorithms) need special care. The userspace
process hangs until it gets a timeout when we use crypto_alg_mod_lookup()
to lookup these algorithms. So export the lookup functions for these
algorithms and use them in crypto_add_alg().
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (102 commits)
crypto: sha-s390 - Fix warnings in import function
crypto: vmac - New hash algorithm for intel_txt support
crypto: api - Do not displace newly registered algorithms
crypto: ansi_cprng - Fix module initialization
crypto: xcbc - Fix alignment calculation of xcbc_tfm_ctx
crypto: fips - Depend on ansi_cprng
crypto: blkcipher - Do not use eseqiv on stream ciphers
crypto: ctr - Use chainiv on raw counter mode
Revert crypto: fips - Select CPRNG
crypto: rng - Fix typo
crypto: talitos - add support for 36 bit addressing
crypto: talitos - align locks on cache lines
crypto: talitos - simplify hmac data size calculation
crypto: mv_cesa - Add support for Orion5X crypto engine
crypto: cryptd - Add support to access underlaying shash
crypto: gcm - Use GHASH digest algorithm
crypto: ghash - Add GHASH digest algorithm for GCM
crypto: authenc - Convert to ahash
crypto: api - Fix aligned ctx helper
crypto: hmac - Prehash ipad/opad
...
As struct skcipher_givcrypt_request includes struct crypto_request
at a non-zero offset, testing for NULL after converting the pointer
returned by crypto_dequeue_request does not work. This can result
in IPsec crashes when the queue is depleted.
This patch fixes it by doing the pointer conversion only when the
return value is non-NULL. In particular, we create a new function
__crypto_dequeue_request that does the pointer conversion.
Reported-by: Brad Bosch <bradbosch@comcast.net>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch exports the finup operation where available and adds
a default finup operation for ahash. The operations final, finup
and digest also will now deal with unaligned result pointers by
copying it. Finally export/import operations are will now be
exported too.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Now that all ahash implementations have been converted to the new
ahash type, we can remove old_ahash_alg and its associated support.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch changes crypto4xx to use the new style ahash type.
In particular, we now use ahash_alg to define ahash algorithms
instead of crypto_alg.
This is achieved by introducing a union that encapsulates the
new type and the existing crypto_alg structure. They're told
apart through a u32 field containing the type value.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds the helpers crypto_drop_ahash and crypto_drop_shash
so that these spawns can be dropped without ugly casts.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch converts crypto_ahash to the new style. The old ahash
algorithm type is retained until the existing ahash implementations
are also converted. All ahash users will automatically get the
new crypto_ahash type.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds the helper crypto_ahash_set_reqsize so that
implementations do not directly access the crypto_ahash structure.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch exports the async functions so that they can be reused
by cryptd when it switches over to using shash.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch changes descsize to a run-time attribute so that
implementations can change it in their init functions.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds the helper shash_instance_ctx which is the shash
analogue of crypto_instance_ctx.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds __crypto_shash_cast which turns a crypto_tfm
into crypto_shash. It's analogous to the other __crypto_*_cast
functions.
It hasn't been needed until now since no existing shash algorithms
have had an init function.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds crypto_shash_ctx_aligned which will be needed
by hmac after its conversion to shash.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds shash_register_instance so that shash instances
can be registered without bypassing the shash checks applied to
normal algorithms.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds the helper shash_attr_alg2 which locates a shash
algorithm based on the information in the given attribute.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds the functions needed to create and use shash
spawns, i.e., to use shash algorithms in a template.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds shash_instance and the associated alloc/free
functions. This is meant to be an instance that with a shash
algorithm under it. Note that the instance itself doesn't have
to be shash.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The current "comp" crypto interface supports one-shot (de)compression only,
i.e. the whole data buffer to be (de)compressed must be passed at once, and
the whole (de)compressed data buffer will be received at once.
In several use-cases (e.g. compressed file systems that store files in big
compressed blocks), this workflow is not suitable.
Furthermore, the "comp" type doesn't provide for the configuration of
(de)compression parameters, and always allocates workspace memory for both
compression and decompression, which may waste memory.
To solve this, add a "pcomp" partial (de)compression interface that provides
the following operations:
- crypto_compress_{init,update,final}() for compression,
- crypto_decompress_{init,update,final}() for decompression,
- crypto_{,de}compress_setup(), to configure (de)compression parameters
(incl. allocating workspace memory).
The (de)compression methods take a struct comp_request, which was mimicked
after the z_stream object in zlib, and contains buffer pointer and length
pairs for input and output.
The setup methods take an opaque parameter pointer and length pair. Parameters
are supposed to be encoded using netlink attributes, whose meanings depend on
the actual (name of the) (de)compression algorithm.
Signed-off-by: Geert Uytterhoeven <Geert.Uytterhoeven@sonycom.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch allows shash algorithms to be used through the old hash
interface. This is a transitional measure so we can convert the
underlying algorithms to shash before converting the users across.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>