There is no point. We would just squeeze the guest to put more and
more pages in the swap disk without any purpose.
The only time it makes sense to use the selfballooning and shrinking
is when frontswap is being utilized.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
If tmem is built-in or a module, the user has the option on
the command line to influence it by doing: tmem.<some option>
instead of having a variety of "nocleancache", and
"nofrontswap". The others: "noselfballooning" and "selfballooning";
and "noselfshrink" are in a different driver xen-selfballoon.c
and the patches:
xen/tmem: Remove the usage of 'noselfshrink' and use 'tmem.selfshrink' bool instead.
xen/tmem: Remove the usage of 'noselfballoon','selfballoon' and use 'tmem.selfballon' bool instead.
remove them.
Also add documentation.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Pull IOMMU updates from Joerg Roedel:
"The updates are mostly about the x86 IOMMUs this time.
Exceptions are the groundwork for the PAMU IOMMU from Freescale (for a
PPC platform) and an extension to the IOMMU group interface.
On the x86 side this includes a workaround for VT-d to disable
interrupt remapping on broken chipsets. On the AMD-Vi side the most
important new feature is a kernel command-line interface to override
broken information in IVRS ACPI tables and get interrupt remapping
working this way.
Besides that there are small fixes all over the place."
* tag 'iommu-updates-v3.10' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (24 commits)
iommu/tegra: Fix printk formats for dma_addr_t
iommu: Add a function to find an iommu group by id
iommu/vt-d: Remove warning for HPET scope type
iommu: Move swap_pci_ref function to drivers/iommu/pci.h.
iommu/vt-d: Disable translation if already enabled
iommu/amd: fix error return code in early_amd_iommu_init()
iommu/AMD: Per-thread IOMMU Interrupt Handling
iommu: Include linux/err.h
iommu/amd: Workaround for ERBT1312
iommu/amd: Document ivrs_ioapic and ivrs_hpet parameters
iommu/amd: Don't report firmware bugs with cmd-line ivrs overrides
iommu/amd: Add ioapic and hpet ivrs override
iommu/amd: Add early maps for ioapic and hpet
iommu/amd: Extend IVRS special device data structure
iommu/amd: Move add_special_device() to __init
iommu: Fix compile warnings with forward declarations
iommu/amd: Properly initialize irq-table lock
iommu/amd: Use AMD specific data structure for irq remapping
iommu/amd: Remove map_sg_no_iommu()
iommu/vt-d: add quirk for broken interrupt remapping on 55XX chipsets
...
Pull 'full dynticks' support from Ingo Molnar:
"This tree from Frederic Weisbecker adds a new, (exciting! :-) core
kernel feature to the timer and scheduler subsystems: 'full dynticks',
or CONFIG_NO_HZ_FULL=y.
This feature extends the nohz variable-size timer tick feature from
idle to busy CPUs (running at most one task) as well, potentially
reducing the number of timer interrupts significantly.
This feature got motivated by real-time folks and the -rt tree, but
the general utility and motivation of full-dynticks runs wider than
that:
- HPC workloads get faster: CPUs running a single task should be able
to utilize a maximum amount of CPU power. A periodic timer tick at
HZ=1000 can cause a constant overhead of up to 1.0%. This feature
removes that overhead - and speeds up the system by 0.5%-1.0% on
typical distro configs even on modern systems.
- Real-time workload latency reduction: CPUs running critical tasks
should experience as little jitter as possible. The last remaining
source of kernel-related jitter was the periodic timer tick.
- A single task executing on a CPU is a pretty common situation,
especially with an increasing number of cores/CPUs, so this feature
helps desktop and mobile workloads as well.
The cost of the feature is mainly related to increased timer
reprogramming overhead when a CPU switches its tick period, and thus
slightly longer to-idle and from-idle latency.
Configuration-wise a third mode of operation is added to the existing
two NOHZ kconfig modes:
- CONFIG_HZ_PERIODIC: [formerly !CONFIG_NO_HZ], now explicitly named
as a config option. This is the traditional Linux periodic tick
design: there's a HZ tick going on all the time, regardless of
whether a CPU is idle or not.
- CONFIG_NO_HZ_IDLE: [formerly CONFIG_NO_HZ=y], this turns off the
periodic tick when a CPU enters idle mode.
- CONFIG_NO_HZ_FULL: this new mode, in addition to turning off the
tick when a CPU is idle, also slows the tick down to 1 Hz (one
timer interrupt per second) when only a single task is running on a
CPU.
The .config behavior is compatible: existing !CONFIG_NO_HZ and
CONFIG_NO_HZ=y settings get translated to the new values, without the
user having to configure anything. CONFIG_NO_HZ_FULL is turned off by
default.
This feature is based on a lot of infrastructure work that has been
steadily going upstream in the last 2-3 cycles: related RCU support
and non-periodic cputime support in particular is upstream already.
This tree adds the final pieces and activates the feature. The pull
request is marked RFC because:
- it's marked 64-bit only at the moment - the 32-bit support patch is
small but did not get ready in time.
- it has a number of fresh commits that came in after the merge
window. The overwhelming majority of commits are from before the
merge window, but still some aspects of the tree are fresh and so I
marked it RFC.
- it's a pretty wide-reaching feature with lots of effects - and
while the components have been in testing for some time, the full
combination is still not very widely used. That it's default-off
should reduce its regression abilities and obviously there are no
known regressions with CONFIG_NO_HZ_FULL=y enabled either.
- the feature is not completely idempotent: there is no 100%
equivalent replacement for a periodic scheduler/timer tick. In
particular there's ongoing work to map out and reduce its effects
on scheduler load-balancing and statistics. This should not impact
correctness though, there are no known regressions related to this
feature at this point.
- it's a pretty ambitious feature that with time will likely be
enabled by most Linux distros, and we'd like you to make input on
its design/implementation, if you dislike some aspect we missed.
Without flaming us to crisp! :-)
Future plans:
- there's ongoing work to reduce 1Hz to 0Hz, to essentially shut off
the periodic tick altogether when there's a single busy task on a
CPU. We'd first like 1 Hz to be exposed more widely before we go
for the 0 Hz target though.
- once we reach 0 Hz we can remove the periodic tick assumption from
nr_running>=2 as well, by essentially interrupting busy tasks only
as frequently as the sched_latency constraints require us to do -
once every 4-40 msecs, depending on nr_running.
I am personally leaning towards biting the bullet and doing this in
v3.10, like the -rt tree this effort has been going on for too long -
but the final word is up to you as usual.
More technical details can be found in Documentation/timers/NO_HZ.txt"
* 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (39 commits)
sched: Keep at least 1 tick per second for active dynticks tasks
rcu: Fix full dynticks' dependency on wide RCU nocb mode
nohz: Protect smp_processor_id() in tick_nohz_task_switch()
nohz_full: Add documentation.
cputime_nsecs: use math64.h for nsec resolution conversion helpers
nohz: Select VIRT_CPU_ACCOUNTING_GEN from full dynticks config
nohz: Reduce overhead under high-freq idling patterns
nohz: Remove full dynticks' superfluous dependency on RCU tree
nohz: Fix unavailable tick_stop tracepoint in dynticks idle
nohz: Add basic tracing
nohz: Select wide RCU nocb for full dynticks
nohz: Disable the tick when irq resume in full dynticks CPU
nohz: Re-evaluate the tick for the new task after a context switch
nohz: Prepare to stop the tick on irq exit
nohz: Implement full dynticks kick
nohz: Re-evaluate the tick from the scheduler IPI
sched: New helper to prevent from stopping the tick in full dynticks
sched: Kick full dynticks CPU that have more than one task enqueued.
perf: New helper to prevent full dynticks CPUs from stopping tick
perf: Kick full dynticks CPU if events rotation is needed
...
Pull ARM SoC platform updates from Olof Johansson:
"This branch contains part 1 of the platform updates for 3.10. Among
the highlights:
- Support for the new Atmel Cortex-A5 based platforms (SAMA5D3)
- New support for CSR SiRFatlas6 SoCs
- A handful of updates for NVidia T114 (a.k.a. Tegra 4)
- A bunch of updates for the shmobile platforms
- A handful of updates for davinci
- A few updates for Qualcomm MSM
- Plus a handful of other patches, defconfig updates, etc."
* tag 'soc-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (135 commits)
ARM: tegra: pm: fix build error w/o PM_SLEEP
ARM: davinci: ensure global variables are declared
ARM: davinci: sram.c: fix incorrect type in assignment
ARM: davinci: da8xx dt: make file local symbols static
ARM: davinci: da8xx: add remoteproc support
ARM: socfpga: Upgrade clk driver for socfpga to make use of dts clock entries
ARM: socfpga: Add clock entries into device tree
ARM: socfpga: Enable soft reset
ARM: EXYNOS: replace cpumask by the corresponding macro
ARM: EXYNOS: handle properly the return values
ARM: EXYNOS: factor out the idle states
ARM: OMAP4: Enable fix for Cortex-A9 erratas
ARM: OMAP2+: Export SoC information to userspace
ARM: OMAP2+: SoC name and revision unification
ARM: OMAP2+: Move common part of late init into common function
ARM: tegra: pm: remove duplicated include from pm.c
ARM: davinci: da850: override mmc DT node device name
ARM: davinci: da850: add mmc DT entries
mmc: davinci_mmc: add DT support
ARM: SAMSUNG: check processor type before cache restoration in resume
...
The full dynticks tree needs the latest RCU and sched
upstream updates in order to fix some dependencies.
Merge a common upstream merge point that has these
updates.
Conflicts:
include/linux/perf_event.h
kernel/rcutree.h
kernel/rcutree_plugin.h
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Pull x86 debug update from Ingo Molnar:
"Two small changes: a documentation update and a constification"
* 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, early-printk: Update earlyprintk documentation (and kill x86 copy)
x86: Constify a few items
Pull RCU updates from Ingo Molnar:
"The main changes in this cycle are mostly related to preparatory work
for the full-dynticks work:
- Remove restrictions on no-CBs CPUs, make RCU_FAST_NO_HZ take
advantage of numbered callbacks, do callback accelerations based on
numbered callbacks. Posted to LKML at
https://lkml.org/lkml/2013/3/18/960
- RCU documentation updates. Posted to LKML at
https://lkml.org/lkml/2013/3/18/570
- Miscellaneous fixes. Posted to LKML at
https://lkml.org/lkml/2013/3/18/594"
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
rcu: Make rcu_accelerate_cbs() note need for future grace periods
rcu: Abstract rcu_start_future_gp() from rcu_nocb_wait_gp()
rcu: Rename n_nocb_gp_requests to need_future_gp
rcu: Push lock release to rcu_start_gp()'s callers
rcu: Repurpose no-CBs event tracing to future-GP events
rcu: Rearrange locking in rcu_start_gp()
rcu: Make RCU_FAST_NO_HZ take advantage of numbered callbacks
rcu: Accelerate RCU callbacks at grace-period end
rcu: Export RCU_FAST_NO_HZ parameters to sysfs
rcu: Distinguish "rcuo" kthreads by RCU flavor
rcu: Add event tracing for no-CBs CPUs' grace periods
rcu: Add event tracing for no-CBs CPUs' callback registration
rcu: Introduce proper blocking to no-CBs kthreads GP waits
rcu: Provide compile-time control for no-CBs CPUs
rcu: Tone down debugging during boot-up and shutdown.
rcu: Add softirq-stall indications to stall-warning messages
rcu: Documentation update
rcu: Make bugginess of code sample more evident
rcu: Fix hlist_bl_set_first_rcu() annotation
rcu: Delete unused rcu_node "wakemask" field
...
Pull workqueue updates from Tejun Heo:
"A lot of activities on workqueue side this time. The changes achieve
the followings.
- WQ_UNBOUND workqueues - the workqueues which are per-cpu - are
updated to be able to interface with multiple backend worker pools.
This involved a lot of churning but the end result seems actually
neater as unbound workqueues are now a lot closer to per-cpu ones.
- The ability to interface with multiple backend worker pools are
used to implement unbound workqueues with custom attributes.
Currently the supported attributes are the nice level and CPU
affinity. It may be expanded to include cgroup association in
future. The attributes can be specified either by calling
apply_workqueue_attrs() or through /sys/bus/workqueue/WQ_NAME/* if
the workqueue in question is exported through sysfs.
The backend worker pools are keyed by the actual attributes and
shared by any workqueues which share the same attributes. When
attributes of a workqueue are changed, the workqueue binds to the
worker pool with the specified attributes while leaving the work
items which are already executing in its previous worker pools
alone.
This allows converting custom worker pool implementations which
want worker attribute tuning to use workqueues. The writeback pool
is already converted in block tree and there are a couple others
are likely to follow including btrfs io workers.
- WQ_UNBOUND's ability to bind to multiple worker pools is also used
to make it NUMA-aware. Because there's no association between work
item issuer and the specific worker assigned to execute it, before
this change, using unbound workqueue led to unnecessary cross-node
bouncing and it couldn't be helped by autonuma as it requires tasks
to have implicit node affinity and workers are assigned randomly.
After these changes, an unbound workqueue now binds to multiple
NUMA-affine worker pools so that queued work items are executed in
the same node. This is turned on by default but can be disabled
system-wide or for individual workqueues.
Crypto was requesting NUMA affinity as encrypting data across
different nodes can contribute noticeable overhead and doing it
per-cpu was too limiting for certain cases and IO throughput could
be bottlenecked by one CPU being fully occupied while others have
idle cycles.
While the new features required a lot of changes including
restructuring locking, it didn't complicate the execution paths much.
The unbound workqueue handling is now closer to per-cpu ones and the
new features are implemented by simply associating a workqueue with
different sets of backend worker pools without changing queue,
execution or flush paths.
As such, even though the amount of change is very high, I feel
relatively safe in that it isn't likely to cause subtle issues with
basic correctness of work item execution and handling. If something
is wrong, it's likely to show up as being associated with worker pools
with the wrong attributes or OOPS while workqueue attributes are being
changed or during CPU hotplug.
While this creates more backend worker pools, it doesn't add too many
more workers unless, of course, there are many workqueues with unique
combinations of attributes. Assuming everything else is the same,
NUMA awareness costs an extra worker pool per NUMA node with online
CPUs.
There are also a couple things which are being routed outside the
workqueue tree.
- block tree pulled in workqueue for-3.10 so that writeback worker
pool can be converted to unbound workqueue with sysfs control
exposed. This simplifies the code, makes writeback workers
NUMA-aware and allows tuning nice level and CPU affinity via sysfs.
- The conversion to workqueue means that there's no 1:1 association
between a specific worker, which makes writeback folks unhappy as
they want to be able to tell which filesystem caused a problem from
backtrace on systems with many filesystems mounted. This is
resolved by allowing work items to set debug info string which is
printed when the task is dumped. As this change involves unifying
implementations of dump_stack() and friends in arch codes, it's
being routed through Andrew's -mm tree."
* 'for-3.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq: (84 commits)
workqueue: use kmem_cache_free() instead of kfree()
workqueue: avoid false negative WARN_ON() in destroy_workqueue()
workqueue: update sysfs interface to reflect NUMA awareness and a kernel param to disable NUMA affinity
workqueue: implement NUMA affinity for unbound workqueues
workqueue: introduce put_pwq_unlocked()
workqueue: introduce numa_pwq_tbl_install()
workqueue: use NUMA-aware allocation for pool_workqueues
workqueue: break init_and_link_pwq() into two functions and introduce alloc_unbound_pwq()
workqueue: map an unbound workqueues to multiple per-node pool_workqueues
workqueue: move hot fields of workqueue_struct to the end
workqueue: make workqueue->name[] fixed len
workqueue: add workqueue->unbound_attrs
workqueue: determine NUMA node of workers accourding to the allowed cpumask
workqueue: drop 'H' from kworker names of unbound worker pools
workqueue: add wq_numa_tbl_len and wq_numa_possible_cpumask[]
workqueue: move pwq_pool_locking outside of get/put_unbound_pool()
workqueue: fix memory leak in apply_workqueue_attrs()
workqueue: fix unbound workqueue attrs hashing / comparison
workqueue: fix race condition in unbound workqueue free path
workqueue: remove pwq_lock which is no longer used
...
Pull clock framework update from Michael Turquette:
"The common clock framework changes for 3.10 include many fixes for
existing platforms, as well as adoption of the framework by new
platforms and devices.
Some long-needed fixes to the core framework are here as well as new
features such as improved initialization of clocks from DT as well as
framework reentrancy for nested clock operations."
* tag 'clk-for-linus-3.10' of git://git.linaro.org/people/mturquette/linux: (44 commits)
clk: add clk_ignore_unused option to keep boot clocks on
clk: ux500: fix mismatched types
clk: vexpress: Add separate SP810 driver
clk: si5351: make clk-si5351 depend on CONFIG_OF
clk: export __clk_get_flags for modular clock providers
clk: vt8500: Missing breaks in vtwm_pll_round_rate/_set_rate.
clk: sunxi: Unify oscillator clock
clk: composite: allow fixed rates & fixed dividers
clk: composite: rename 'div' references to 'rate'
clk: add si5351 i2c common clock driver
clk: add device tree fixed-factor-clock binding support
clk: Properly handle notifier return values
clk: ux500: abx500: Define clock tree for ab850x
clk: ux500: Add support for sysctrl clocks
clk: mvebu: Fix valid value range checking for cpu_freq_select
clk: Fixup locking issues for clk_set_parent
clk: Fixup errorhandling for clk_set_parent
clk: Restructure code for __clk_reparent
clk: sunxi: drop an unnecesary kmalloc
clk: sunxi: drop CLK_IGNORE_UNUSED
...
Pull tracing updates from Steven Rostedt:
"Along with the usual minor fixes and clean ups there are a few major
changes with this pull request.
1) Multiple buffers for the ftrace facility
This feature has been requested by many people over the last few
years. I even heard that Google was about to implement it themselves.
I finally had time and cleaned up the code such that you can now
create multiple instances of the ftrace buffer and have different
events go to different buffers. This way, a low frequency event will
not be lost in the noise of a high frequency event.
Note, currently only events can go to different buffers, the tracers
(ie function, function_graph and the latency tracers) still can only
be written to the main buffer.
2) The function tracer triggers have now been extended.
The function tracer had two triggers. One to enable tracing when a
function is hit, and one to disable tracing. Now you can record a
stack trace on a single (or many) function(s), take a snapshot of the
buffer (copy it to the snapshot buffer), and you can enable or disable
an event to be traced when a function is hit.
3) A perf clock has been added.
A "perf" clock can be chosen to be used when tracing. This will cause
ftrace to use the same clock as perf uses, and hopefully this will
make it easier to interleave the perf and ftrace data for analysis."
* tag 'trace-3.10' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (82 commits)
tracepoints: Prevent null probe from being added
tracing: Compare to 1 instead of zero for is_signed_type()
tracing: Remove obsolete macro guard _TRACE_PROFILE_INIT
ftrace: Get rid of ftrace_profile_bits
tracing: Check return value of tracing_init_dentry()
tracing: Get rid of unneeded key calculation in ftrace_hash_move()
tracing: Reset ftrace_graph_filter_enabled if count is zero
tracing: Fix off-by-one on allocating stat->pages
kernel: tracing: Use strlcpy instead of strncpy
tracing: Update debugfs README file
tracing: Fix ftrace_dump()
tracing: Rename trace_event_mutex to trace_event_sem
tracing: Fix comment about prefix in arch_syscall_match_sym_name()
tracing: Convert trace_destroy_fields() to static
tracing: Move find_event_field() into trace_events.c
tracing: Use TRACE_MAX_PRINT instead of constant
tracing: Use pr_warn_once instead of open coded implementation
ring-buffer: Add ring buffer startup selftest
tracing: Bring Documentation/trace/ftrace.txt up to date
tracing: Add "perf" trace_clock
...
Conflicts:
kernel/trace/ftrace.c
kernel/trace/trace.c
This is primarily useful when there's a driver that doesn't claim clocks
properly, but the bootloader leaves them on. It's not expected to be used
in normal cases, but for bringup and debug it's very useful to have the
option to not gate unclaimed clocks that are still on.
Signed-off-by: Olof Johansson <olof@lixom.net>
Signed-off-by: Mike Turquette <mturquette@linaro.org>
[mturquette@linaro.org: fixed up trivial merge issue]
Pull kdump fixes from Peter Anvin:
"The kexec/kdump people have found several problems with the support
for loading over 4 GiB that was introduced in this merge cycle. This
is partly due to a number of design problems inherent in the way the
various pieces of kdump fit together (it is pretty horrifically manual
in many places.)
After a *lot* of iterations this is the patchset that was agreed upon,
but of course it is now very late in the cycle. However, because it
changes both the syntax and semantics of the crashkernel option, it
would be desirable to avoid a stable release with the broken
interfaces."
I'm not happy with the timing, since originally the plan was to release
the final 3.9 tomorrow. But apparently I'm doing an -rc8 instead...
* 'x86-kdump-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
kexec: use Crash kernel for Crash kernel low
x86, kdump: Change crashkernel_high/low= to crashkernel=,high/low
x86, kdump: Retore crashkernel= to allocate under 896M
x86, kdump: Set crashkernel_low automatically
Document the new kernel commandline parameters in the
appropriate file.
Reviewed-by: Shuah Khan <shuahkhan@gmail.com>
Signed-off-by: Joerg Roedel <joro@8bytes.org>
The timekeeping job must be able to run early on boot
because there may be some pre-SMP (and thus pre-initcalls )
components that rely on it. The IO-APIC is one such users
as it tests the timer health by watching jiffies progression.
Given that it happens before we know the initial online
set, we can't rely on it to select a timekeeper. We need
one before SMP time otherwise we simply crash on boot.
To fix this and keep things simple for now, force the boot CPU
outside of the full dynticks range in any case and do this early
on kernel parameter parsing time.
We might want a trickier solution later, expecially for aSMP
architectures that need to assign housekeeping tasks to arbitrary
low power CPUs.
But it's still first pass KISS time for now.
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Per hpa, use crashkernel=X,high crashkernel=Y,low instead of
crashkernel_hign=X crashkernel_low=Y. As that could be extensible.
-v2: according to Vivek, change delimiter to ;
-v3: let hign and low only handle simple form and it conforms to
description in kernel-parameters.txt
still keep crashkernel=X override any crashkernel=X,high
crashkernel=Y,low
-v4: update get_last_crashkernel returning and add more strict
checking in parse_crashkernel_simple() found by HATAYAMA.
-v5: Change delimiter back to , according to HPA.
also separate parse_suffix from parse_simper according to vivek.
so we can avoid @pos in that path.
-v6: Tight the checking about crashkernel=X,highblahblah,high
found by HTYAYAMA.
Cc: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1366089828-19692-5-git-send-email-yinghai@kernel.org
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Vivek found old kexec-tools does not work new kernel anymore.
So change back crashkernel= back to old behavoir, and add crashkernel_high=
to let user decide if buffer could be above 4G, and also new kexec-tools will
be needed.
-v2: let crashkernel=X override crashkernel_high=
update description about _high will be ignored by crashkernel=X
-v3: update description about kernel-parameters.txt according to Vivek.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1366089828-19692-4-git-send-email-yinghai@kernel.org
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Chao said that kdump does does work well on his system on 3.8
without extra parameter, even iommu does not work with kdump.
And now have to append crashkernel_low=Y in first kernel to make
kdump work.
We have now modified crashkernel=X to allocate memory beyong 4G (if
available) and do not allocate low range for crashkernel if the user
does not specify that with crashkernel_low=Y. This causes regression
if iommu is not enabled. Without iommu, swiotlb needs to be setup in
first 4G and there is no low memory available to second kernel.
Set crashkernel_low automatically if the user does not specify that.
For system that does support IOMMU with kdump properly, user could
specify crashkernel_low=0 to save that 72M low ram.
-v3: add swiotlb_size() according to Konrad.
-v4: add comments what 8M is for according to hpa.
also update more crashkernel_low= in kernel-parameters.txt
-v5: update changelog according to Vivek.
-v6: Change description about swiotlb referring according to HATAYAMA.
Reported-by: WANG Chao <chaowang@redhat.com>
Tested-by: WANG Chao <chaowang@redhat.com>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1366089828-19692-2-git-send-email-yinghai@kernel.org
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Using this parameter one can disable the storage_size/2 check if
he is really sure that the UEFI does sane gc and fulfills the spec.
This parameter is useful if a devices uses more than 50% of the
storage by default.
The Intel DQSW67 desktop board is such a sucker for exmaple.
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Add remoteproc platform device for controlling the DSP
on da8xx. The patch uses CMA-based reservation of physical
memory block for DSP use. A new kernel command-line parameter
has been added to allow boot-time specification of the physical
memory block.
Signed-off-by: Robert Tivy <rtivy@ti.com>
[nsekhar@ti.com: edit commit message for readability and
style improvements]
Signed-off-by: Sekhar Nori <nsekhar@ti.com>