* 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (35 commits)
perf: Fix unexported generic perf_arch_fetch_caller_regs
perf record: Don't try to find buildids in a zero sized file
perf: export perf_trace_regs and perf_arch_fetch_caller_regs
perf, x86: Fix hw_perf_enable() event assignment
perf, ppc: Fix compile error due to new cpu notifiers
perf: Make the install relative to DESTDIR if specified
kprobes: Calculate the index correctly when freeing the out-of-line execution slot
perf tools: Fix sparse CPU numbering related bugs
perf_event: Fix oops triggered by cpu offline/online
perf: Drop the obsolete profile naming for trace events
perf: Take a hot regs snapshot for trace events
perf: Introduce new perf_fetch_caller_regs() for hot regs snapshot
perf/x86-64: Use frame pointer to walk on irq and process stacks
lockdep: Move lock events under lockdep recursion protection
perf report: Print the map table just after samples for which no map was found
perf report: Add multiple event support
perf session: Change perf_session post processing functions to take histogram tree
perf session: Add storage for seperating event types in report
perf session: Change add_hist_entry to take the tree root instead of session
perf record: Add ID and to recorded event data when recording multiple events
...
perf_arch_fetch_caller_regs() is exported for the overriden x86
version, but not for the generic weak version.
As a general rule, weak functions should not have their symbol
exported in the same file they are defined.
So let's export it on trace_event_perf.c as it is used by trace
events only.
This fixes:
ERROR: ".perf_arch_fetch_caller_regs" [fs/xfs/xfs.ko] undefined!
ERROR: ".perf_arch_fetch_caller_regs" [arch/powerpc/platforms/cell/spufs/spufs.ko] undefined!
-v2: And also only build it if trace events are enabled.
-v3: Fix changelog mistake
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1268697902-9518-1-git-send-regression-fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
locking: Make sparse work with inline spinlocks and rwlocks
x86/mce: Fix RCU lockdep splats
rcu: Increase RCU CPU stall timeouts if PROVE_RCU
ftrace: Replace read_barrier_depends() with rcu_dereference_raw()
rcu: Suppress RCU lockdep warnings during early boot
rcu, ftrace: Fix RCU lockdep splat in ftrace_perf_buf_prepare()
rcu: Suppress __mpol_dup() false positive from RCU lockdep
rcu: Make rcu_read_lock_sched_held() handle !PREEMPT
rcu: Add control variables to lockdep_rcu_dereference() diagnostics
rcu, cgroup: Relax the check in task_subsys_state() as early boot is now handled by lockdep-RCU
rcu: Use wrapper function instead of exporting tasklist_lock
sched, rcu: Fix rcu_dereference() for RCU-lockdep
rcu: Make task_subsys_state() RCU-lockdep checks handle boot-time use
rcu: Fix holdoff for accelerated GPs for last non-dynticked CPU
x86/gart: Unexport gart_iommu_aperture
Fix trivial conflicts in kernel/trace/ftrace.c
* 'tracing-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
tracing: Do not record user stack trace from NMI context
tracing: Disable buffer switching when starting or stopping trace
tracing: Use same local variable when resetting the ring buffer
function-graph: Init curr_ret_stack with ret_stack
ring-buffer: Move disabled check into preempt disable section
function-graph: Add tracing_thresh support to function_graph tracer
tracing: Update the comm field in the right variable in update_max_tr
function-graph: Use comment notation for func names of dangling '}'
function-graph: Fix unused reference to ftrace_set_func()
tracing: Fix warning in s_next of trace file ops
tracing: Include irqflags headers from trace clock
A bug was found with Li Zefan's ftrace_stress_test that caused applications
to segfault during the test.
Placing a tracing_off() in the segfault code, and examining several
traces, I found that the following was always the case. The lock tracer
was enabled (lockdep being required) and userstack was enabled. Testing
this out, I just enabled the two, but that was not good enough. I needed
to run something else that could trigger it. Running a load like hackbench
did not work, but executing a new program would. The following would
trigger the segfault within seconds:
# echo 1 > /debug/tracing/options/userstacktrace
# echo 1 > /debug/tracing/events/lock/enable
# while :; do ls > /dev/null ; done
Enabling the function graph tracer and looking at what was happening
I finally noticed that all cashes happened just after an NMI.
1) | copy_user_handle_tail() {
1) | bad_area_nosemaphore() {
1) | __bad_area_nosemaphore() {
1) | no_context() {
1) | fixup_exception() {
1) 0.319 us | search_exception_tables();
1) 0.873 us | }
[...]
1) 0.314 us | __rcu_read_unlock();
1) 0.325 us | native_apic_mem_write();
1) 0.943 us | }
1) 0.304 us | rcu_nmi_exit();
[...]
1) 0.479 us | find_vma();
1) | bad_area() {
1) | __bad_area() {
After capturing several traces of failures, all of them happened
after an NMI. Curious about this, I added a trace_printk() to the NMI
handler to read the regs->ip to see where the NMI happened. In which I
found out it was here:
ffffffff8135b660 <page_fault>:
ffffffff8135b660: 48 83 ec 78 sub $0x78,%rsp
ffffffff8135b664: e8 97 01 00 00 callq ffffffff8135b800 <error_entry>
What was happening is that the NMI would happen at the place that a page
fault occurred. It would call rcu_read_lock() which was traced by
the lock events, and the user_stack_trace would run. This would trigger
a page fault inside the NMI. I do not see where the CR2 register is
saved or restored in NMI handling. This means that it would corrupt
the page fault handling that the NMI interrupted.
The reason the while loop of ls helped trigger the bug, was that
each execution of ls would cause lots of pages to be faulted in, and
increase the chances of the race happening.
The simple solution is to not allow user stack traces in NMI context.
After this patch, I ran the above "ls" test for a couple of hours
without any issues. Without this patch, the bug would trigger in less
than a minute.
Cc: stable@kernel.org
Reported-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
When the trace iterator is read, tracing_start() and tracing_stop()
is called to stop tracing while the iterator is processing the trace
output.
These functions disable both the standard buffer and the max latency
buffer. But if the wakeup tracer is running, it can switch these
buffers between the two disables:
buffer = global_trace.buffer;
if (buffer)
ring_buffer_record_disable(buffer);
<<<--------- swap happens here
buffer = max_tr.buffer;
if (buffer)
ring_buffer_record_disable(buffer);
What happens is that we disabled the same buffer twice. On tracing_start()
we can enable the same buffer twice. All ring_buffer_record_disable()
must be matched with a ring_buffer_record_enable() or the buffer
can be disable permanently, or enable prematurely, and cause a bug
where a reset happens while a trace is commiting.
This patch protects these two by taking the ftrace_max_lock to prevent
a switch from occurring.
Found with Li Zefan's ftrace_stress_test.
Cc: stable@kernel.org
Reported-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
In the ftrace code that resets the ring buffer it references the
buffer with a local variable, but then uses the tr->buffer as the
parameter to reset. If the wakeup tracer is running, which can
switch the tr->buffer with the max saved buffer, this can break
the requirement of disabling the buffer before the reset.
buffer = tr->buffer;
ring_buffer_record_disable(buffer);
synchronize_sched();
__tracing_reset(tr->buffer, cpu);
If the tr->buffer is swapped, then the reset is not happening to the
buffer that was disabled. This will cause the ring buffer to fail.
Found with Li Zefan's ftrace_stress_test.
Cc: stable@kernel.org
Reported-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
If the graph tracer is active, and a task is forked but the allocating of
the processes graph stack fails, it can cause crash later on.
This is due to the temporary stack being NULL, but the curr_ret_stack
variable is copied from the parent. If it is not -1, then in
ftrace_graph_probe_sched_switch() the following:
for (index = next->curr_ret_stack; index >= 0; index--)
next->ret_stack[index].calltime += timestamp;
Will cause a kernel OOPS.
Found with Li Zefan's ftrace_stress_test.
Cc: stable@kernel.org
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The ring buffer resizing and resetting relies on a schedule RCU
action. The buffers are disabled, a synchronize_sched() is called
and then the resize or reset takes place.
But this only works if the disabling of the buffers are within the
preempt disabled section, otherwise a window exists that the buffers
can be written to while a reset or resize takes place.
Cc: stable@kernel.org
Reported-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
LKML-Reference: <4B949E43.2010906@cn.fujitsu.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
We are taking a wrong regs snapshot when a trace event triggers.
Either we use get_irq_regs(), which gives us the interrupted
registers if we are in an interrupt, or we use task_pt_regs()
which gives us the state before we entered the kernel, assuming
we are lucky enough to be no kernel thread, in which case
task_pt_regs() returns the initial set of regs when the kernel
thread was started.
What we want is different. We need a hot snapshot of the regs,
so that we can get the instruction pointer to record in the
sample, the frame pointer for the callchain, and some other
things.
Let's use the new perf_fetch_caller_regs() for that.
Comparison with perf record -e lock: -R -a -f -g
Before:
perf [kernel] [k] __do_softirq
|
--- __do_softirq
|
|--55.16%-- __open
|
--44.84%-- __write_nocancel
After:
perf [kernel] [k] perf_tp_event
|
--- perf_tp_event
|
|--41.07%-- lock_acquire
| |
| |--39.36%-- _raw_spin_lock
| | |
| | |--7.81%-- hrtimer_interrupt
| | | smp_apic_timer_interrupt
| | | apic_timer_interrupt
The old case was producing unreliable callchains. Now having
right frame and instruction pointers, we have the trace we
want.
Also syscalls and kprobe events already have the right regs,
let's use them instead of wasting a retrieval.
v2: Follow the rename perf_save_regs() -> perf_fetch_caller_regs()
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Jason Baron <jbaron@redhat.com>
Cc: Archs <linux-arch@vger.kernel.org>
Add support for tracing_thresh to the function_graph tracer. This
version of this feature isolates the checks into new entry and
return functions, to avoid adding more conditional code into the
main function_graph paths.
When the tracing_thresh is set and the function graph tracer is
enabled, only the functions that took longer than the time in
microseconds that was set in tracing_thresh are recorded. To do this
efficiently, only the function exits are recorded:
[tracing]# echo 100 > tracing_thresh
[tracing]# echo function_graph > current_tracer
[tracing]# cat trace
# tracer: function_graph
#
# CPU DURATION FUNCTION CALLS
# | | | | | | |
1) ! 119.214 us | } /* smp_apic_timer_interrupt */
1) <========== |
0) ! 101.527 us | } /* __rcu_process_callbacks */
0) ! 126.461 us | } /* rcu_process_callbacks */
0) ! 145.111 us | } /* __do_softirq */
0) ! 149.667 us | } /* do_softirq */
0) ! 168.817 us | } /* irq_exit */
0) ! 248.254 us | } /* smp_apic_timer_interrupt */
Also, add support for specifying tracing_thresh on the kernel
command line. When used like so: "tracing_thresh=200 ftrace=function_graph"
this can be used to analyse system startup. It is important to disable
tracing soon after boot, in order to avoid losing the trace data.
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Tim Bird <tim.bird@am.sony.com>
LKML-Reference: <4B87098B.4040308@am.sony.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The latency output showed:
# | task: -3 (uid:0 nice:0 policy:1 rt_prio:99)
The comm is missing in the "task:" and it looks like a minus 3 is
the output. The correct display should be:
# | task: migration/0-3 (uid:0 nice:0 policy:1 rt_prio:99)
The problem is that the comm is being stored in the wrong data
structure. The max_tr.data[cpu] is what stores the comm, not the
tr->data[cpu].
Before this patch the max_tr.data[cpu]->comm was zeroed and the /debug/trace
ended up showing just the '-' sign followed by the pid.
Also remove a needless initialization of max_data.
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
LKML-Reference: <1267824230-23861-1-git-send-email-acme@infradead.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
When a '}' does not have a matching function start, the name is printed
within parenthesis. But this makes it confusing between ending '}'
and function starts. This patch makes the function name appear in C comment
notation.
Old view:
3) 1.281 us | } (might_fault)
3) 3.620 us | } (filldir)
3) 5.251 us | } (call_filldir)
3) | call_filldir() {
3) | filldir() {
New view:
3) 1.281 us | } /* might_fault */
3) 3.620 us | } /* filldir */
3) 5.251 us | } /* call_filldir */
3) | call_filldir() {
3) | filldir() {
Requested-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The declaration of ftrace_set_func() is at the start of the ftrace.c file
and wrapped with a #ifdef CONFIG_FUNCTION_GRAPH condition. If function
graph tracing is enabled but CONFIG_DYNAMIC_FTRACE is not, a warning
about that function being declared static and unused is given.
This really should have been placed within the CONFIG_FUNCTION_GRAPH
condition that uses ftrace_set_func().
Moving the declaration down fixes the warning and makes the code cleaner.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
This warning in s_next() can be triggered by lseek():
[<c018b3f7>] ? s_next+0x77/0x80
[<c013e3c1>] warn_slowpath_common+0x81/0xa0
[<c018b3f7>] ? s_next+0x77/0x80
[<c013e3fa>] warn_slowpath_null+0x1a/0x20
[<c018b3f7>] s_next+0x77/0x80
[<c01efa77>] traverse+0x117/0x200
[<c01eff13>] seq_lseek+0xa3/0x120
[<c01efe70>] ? seq_lseek+0x0/0x120
[<c01d7081>] vfs_llseek+0x41/0x50
[<c01d8116>] sys_llseek+0x66/0xa0
[<c0102bd0>] sysenter_do_call+0x12/0x26
The iterator "leftover" variable is zeroed in the opening of the trace
file. But lseek can call s_start() which will call s_next() without
reseting the "leftover" variable back to zero, which might trigger
the WARN_ON_ONCE(iter->leftover) that is in s_next().
Cc: stable@kernel.org
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
LKML-Reference: <4B8CE06A.9090207@cn.fujitsu.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
* 'for-2.6.34' of git://git.kernel.dk/linux-2.6-block: (38 commits)
block: don't access jiffies when initialising io_context
cfq: remove 8 bytes of padding from cfq_rb_root on 64 bit builds
block: fix for "Consolidate phys_segment and hw_segment limits"
cfq-iosched: quantum check tweak
blktrace: perform cleanup after setup error
blkdev: fix merge_bvec_fn return value checks
cfq-iosched: requests "in flight" vs "in driver" clarification
cciss: Fix problem with scatter gather elements in the scsi half of the driver
cciss: eliminate unnecessary pointer use in cciss scsi code
cciss: do not use void pointer for scsi hba data
cciss: factor out scatter gather chain block mapping code
cciss: fix scatter gather chain block dma direction kludge
cciss: simplify scatter gather code
cciss: factor out scatter gather chain block allocation and freeing
cciss: detect bad alignment of scsi commands at build time
cciss: clarify command list padding calculation
cfq-iosched: rethink seeky detection for SSDs
cfq-iosched: rework seeky detection
block: remove padding from io_context on 64bit builds
block: Consolidate phys_segment and hw_segment limits
...
Currently even if BLKTRACESETUP ioctl has failed user must call
BLKTRACETEARDOWN to be shure what all staff was cleaned, which
is contr-intuitive.
Let's setup ioctl make necessery cleanup by it self.
Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>