We currently use struct backing_dev_info for various different purposes.
Originally it was introduced to describe a backing device which includes
an unplug and congestion function and various bits of readahead information
and VM-relevant flags. We're also using for tracking dirty inodes for
writeback.
To make writeback properly find all inodes we need to only access the
per-filesystem backing_device pointed to by the superblock in ->s_bdi
inside the writeback code, and not the instances pointeded to by
inode->i_mapping->backing_dev which can be overriden by special devices
or might not be set at all by some filesystems.
Long term we should split out the writeback-relevant bits of struct
backing_device_info (which includes more than the current bdi_writeback)
and only point to it from the superblock while leaving the traditional
backing device as a separate structure that can be overriden by devices.
The one exception for now is the block device filesystem which really
wants different writeback contexts for it's different (internal) inodes
to handle the writeout more efficiently. For now we do this with
a hack in fs-writeback.c because we're so late in the cycle, but in
the future I plan to replace this with a superblock method that allows
for multiple writeback contexts per filesystem.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
fs/fuse/dev.c:1357: warning: ‘total_len’ may be used uninitialized in this
function
Initialize total_len to zero, else its value will be undefined.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
* git://git.kernel.org/pub/scm/linux/kernel/git/sfrench/cifs-2.6:
cifs: prevent infinite recursion in cifs_reconnect_tcon
cifs: set backing_dev_info on new S_ISREG inodes
Having the limits file world readable will ease the task of system
management on systems where root privileges might be restricted.
Having admin restricted with root priviledges, he/she could not check
other users process' limits.
Also it'd align with most of the /proc stat files.
Signed-off-by: Jiri Olsa <jolsa@redhat.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Cc: Eugene Teo <eugene@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cifs_reconnect_tcon is called from smb_init. After a successful
reconnect, cifs_reconnect_tcon will call reset_cifs_unix_caps. That
function will, in turn call CIFSSMBQFSUnixInfo and CIFSSMBSetFSUnixInfo.
Those functions also call smb_init.
It's possible for the session and tcon reconnect to succeed, and then
for another cifs_reconnect to occur before CIFSSMBQFSUnixInfo or
CIFSSMBSetFSUnixInfo to be called. That'll cause those functions to call
smb_init and cifs_reconnect_tcon again, ad infinitum...
Break the infinite recursion by having those functions use a new
smb_init variant that doesn't attempt to perform a reconnect.
Reported-and-Tested-by: Michal Suchanek <hramrach@centrum.cz>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <sfrench@us.ibm.com>
ocfs2 fast symlinks are NUL terminated strings stored inline in the
inode data area. However, disk corruption or a local attacker could, in
theory, remove that NUL. Because we're using strlen() (my fault,
introduced in a731d1 when removing vfs_follow_link()), we could walk off
the end of that string.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Cc: stable@kernel.org
Testing on very recent kernel (2.6.36-rc6) made this warning pop:
WARNING: at fs/fs-writeback.c:87 inode_to_bdi+0x65/0x70()
Hardware name:
Dirtiable inode bdi default != sb bdi cifs
...the following patch fixes it and seems to be the obviously correct
thing to do for cifs.
Cc: stable@kernel.org
Acked-by: Dave Kleikamp <shaggy@linux.vnet.ibm.com>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <sfrench@us.ibm.com>
I have been seeing occasional pauses in transaction throughput up to
30s long under heavy parallel workloads. The only notable thing was
that the xfsaild was trying to be active during the pauses, but
making no progress. It was running exactly 20 times a second (on the
50ms no-progress backoff), and the number of pushbuf events was
constant across this time as well. IOWs, the xfsaild appeared to be
stuck on buffers that it could not push out.
Further investigation indicated that it was trying to push out inode
buffers that were pinned and/or locked. The xfsbufd was also getting
woken at the same frequency (by the xfsaild, no doubt) to push out
delayed write buffers. The xfsbufd was not making any progress
because all the buffers in the delwri queue were pinned. This scan-
and-make-no-progress dance went one in the trace for some seconds,
before the xfssyncd came along an issued a log force, and then
things started going again.
However, I noticed something strange about the log force - there
were way too many IO's issued. 516 log buffers were written, to be
exact. That added up to 129MB of log IO, which got me very
interested because it's almost exactly 25% of the size of the log.
He delayed logging code is suppose to aggregate the minimum of 25%
of the log or 8MB worth of changes before flushing. That's what
really puzzled me - why did a log force write 129MB instead of only
8MB?
Essentially what has happened is that no CIL pushes had occurred
since the previous tail push which cleared out 25% of the log space.
That caused all the new transactions to block because there wasn't
log space for them, but they kick the xfsaild to push the tail.
However, the xfsaild was not making progress because there were
buffers it could not lock and flush, and the xfsbufd could not flush
them because they were pinned. As a result, both the xfsaild and the
xfsbufd could not move the tail of the log forward without the CIL
first committing.
The cause of the problem was that the background CIL push, which
should happen when 8MB of aggregated changes have been committed, is
being held off by the concurrent transaction commit load. The
background push does a down_write_trylock() which will fail if there
is a concurrent transaction commit holding the push lock in read
mode. With 8 CPUs all doing transactions as fast as they can, there
was enough concurrent transaction commits to hold off the background
push until tail-pushing could no longer free log space, and the halt
would occur.
It should be noted that there is no reason why it would halt at 25%
of log space used by a single CIL checkpoint. This bug could
definitely violate the "no transaction should be larger than half
the log" requirement and hence result in corruption if the system
crashed under heavy load. This sort of bug is exactly the reason why
delayed logging was tagged as experimental....
The fix is to start blocking background pushes once the threshold
has been exceeded. Rework the threshold calculations to keep the
amount of log space a CIL checkpoint can use to below that of the
AIL push threshold to avoid the problem completely.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
* 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jlbec/ocfs2:
o2dlm: force free mles during dlm exit
ocfs2: Sync inode flags with ext2.
ocfs2: Move 'wanted' into parens of ocfs2_resmap_resv_bits.
ocfs2: Use cpu_to_le16 for e_leaf_clusters in ocfs2_bg_discontig_add_extent.
ocfs2: update ctime when changing the file's permission by setfacl
ocfs2/net: fix uninitialized ret in o2net_send_message_vec()
Ocfs2: Handle empty list in lockres_seq_start() for dlmdebug.c
Ocfs2: Re-access the journal after ocfs2_insert_extent() in dxdir codes.
ocfs2: Fix lockdep warning in reflink.
ocfs2/lockdep: Move ip_xattr_sem out of ocfs2_xattr_get_nolock.
While umounting, a block mle doesn't get freed if dlm is shutdown after
master request is received but before assert master. This results in unclean
shutdown of dlm domain.
This patch frees all mles that lie around after other nodes were notified about
exiting the dlm and marking dlm state as leaving. Only block mles are expected
to be around, so we log ERROR for other mles but still free them.
Signed-off-by: Srinivas Eeda <srinivas.eeda@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
We sync our inode flags with ext2 and define them by hex
values. But actually in commit 3669567(4 years ago), all
these values are moved to include/linux/fs.h. So we'd
better also use them as what ext2 did. So sync our inode
flags with ext2 by using FS_*.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
The first time I read the function ocfs2_resmap_resv_bits, I consider
about what 'wanted' will be used and consider about the comments.
Then I find it is only used if the reservation is empty. ;)
So we'd better move it to the parens so that it make the code more
readable, what's more, ocfs2_resmap_resv_bits is used so frequently
and we should save some cpus.
Acked-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
e_leaf_clusters is a le16, so use cpu_to_le16 instead
of cpu_to_le32.
What's more, we change 'clusters' to unsigned int to
signify that the size of 'clusters' isn't important here.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
In commit 30e2bab, ext3 fixed it. So change it accordingly in ocfs2.
Steps to reproduce:
# touch aaa
# stat -c %Z aaa
1283760364
# setfacl -m 'u::x,g::x,o::x' aaa
# stat -c %Z aaa
1283760364
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
OCFS2 can return ERESTARTSYS from its write function when the process is
signalled while waiting for a cluster lock (and the filesystem is mounted
with intr mount option). Generally, it seems reasonable to allow
filesystems to return this error code from its IO functions. As we must
not leak ERESTARTSYS (and similar error codes) to userspace as a result of
an AIO operation, we have to properly convert it to EINTR inside AIO code
(restarting the syscall isn't really an option because other AIO could
have been already submitted by the same io_submit syscall).
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Zach Brown <zach.brown@oracle.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 73296bc611 ("procfs: Use generic_file_llseek in /proc/vmcore")
broke seeking on /proc/vmcore. This changes it back to use default_llseek
in order to restore the original behaviour.
The problem with generic_file_llseek is that it only allows seeks up to
inode->i_sb->s_maxbytes, which is zero on procfs and some other virtual
file systems. We should merge generic_file_llseek and default_llseek some
day and clean this up in a proper way, but for 2.6.35/36, reverting vmcore
is the safer solution.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Reported-by: CAI Qian <caiqian@redhat.com>
Tested-by: CAI Qian <caiqian@redhat.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In 32-bit compatibility mode, the error handling for
compat_do_readv_writev() may free an uninitialized pointer, potentially
leading to all sorts of ugly memory corruption. This is reliably
triggerable by unprivileged users by invoking the readv()/writev()
syscalls with an invalid iovec pointer. The below patch fixes this to
emulate the non-compat version.
Introduced by commit b83733639a ("compat: factor out
compat_rw_copy_check_uvector from compat_do_readv_writev")
Signed-off-by: Dan Rosenberg <dan.j.rosenberg@gmail.com>
Cc: stable@kernel.org (2.6.35)
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.dk/linux-2.6-block:
bdi: Fix warnings in __mark_inode_dirty for /dev/zero and friends
char: Mark /dev/zero and /dev/kmem as not capable of writeback
bdi: Initialize noop_backing_dev_info properly
cfq-iosched: fix a kernel OOPs when usb key is inserted
block: fix blk_rq_map_kern bio direction flag
cciss: freeing uninitialized data on error path
Inodes of devices such as /dev/zero can get dirty for example via
utime(2) syscall or due to atime update. Backing device of such inodes
(zero_bdi, etc.) is however unable to handle dirty inodes and thus
__mark_inode_dirty complains. In fact, inode should be rather dirtied
against backing device of the filesystem holding it. This is generally a
good rule except for filesystems such as 'bdev' or 'mtd_inodefs'. Inodes
in these pseudofilesystems are referenced from ordinary filesystem
inodes and carry mapping with real data of the device. Thus for these
inodes we have to use inode->i_mapping->backing_dev_info as we did so
far. We distinguish these filesystems by checking whether sb->s_bdi
points to a non-trivial backing device or not.
Example: Assume we have an ext3 filesystem on /dev/sda1 mounted on /.
There's a device inode A described by a path "/dev/sdb" on this
filesystem. This inode will be dirtied against backing device "8:0"
after this patch. bdev filesystem contains block device inode B coupled
with our inode A. When someone modifies a page of /dev/sdb, it's B that
gets dirtied and the dirtying happens against the backing device "8:16".
Thus both inodes get filed to a correct bdi list.
Cc: stable@kernel.org
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>