Commit Graph

1459 Commits

Author SHA1 Message Date
Rafael J. Wysocki
17ffc8b083 Merge branches 'pm-cpuidle', 'pm-cpufreq' and 'acpi-resources'
* pm-cpuidle:
  suspend-to-idle: Prevent RCU from complaining about tick_freeze()

* pm-cpufreq:
  cpufreq: Allow freq_table to be obtained for offline CPUs
  cpufreq: Initialize the governor again while restoring policy

* acpi-resources:
  ACPI / PCI: Fix regressions caused by resource_size_t overflow with 32-bit kernel
2015-07-16 23:47:19 +02:00
Viresh Kumar
5a31d594a9 cpufreq: Allow freq_table to be obtained for offline CPUs
Users of freq table may want to access it for any CPU from
policy->related_cpus mask. One such user is cpu-cooling layer. It gets a
list of 'clip_cpus' (equivalent to policy->related_cpus) during
registration and tries to get freq_table for the first CPU of this mask.

If the CPU, for which it tries to fetch freq_table, is offline,
cpufreq_frequency_get_table() fails. This happens because it relies on
cpufreq_cpu_get_raw() for its functioning which returns policy only for
online CPUs.

The fix is to access the policy data structure for the given CPU
directly (which also returns a valid policy for offline CPUs), but the
policy itself has to be active (meaning that at least one CPU using it
is online) for the frequency table to be returned.

Because we will be using 'cpufreq_cpu_data' now, which is internal to
the cpufreq core, move cpufreq_frequency_get_table() to cpufreq.c.

Reported-and-tested-by: Pi-Cheng Chen <pi-cheng.chen@linaro.org>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-07-10 01:43:27 +02:00
Viresh Kumar
35afd02e30 cpufreq: Initialize the governor again while restoring policy
When all CPUs of a policy are hot-unplugged, we EXIT the governor but
don't mark policy->governor as NULL. This was done in order to keep last
used governor's information intact in sysfs, while the CPUs are offline.

But we also need to clear policy->governor when restoring the policy.

Because policy->governor still points to the last governor while policy
is restored, following sequence of event happens:
 - cpufreq_init_policy() called while restoring policy
 - find_governor() matches last_governor string for present governors and
   returns last used governor's pointer, say ondemand. policy->governor
   already has the same address, unless the governor was removed in
   between.
 - cpufreq_set_policy() is called with both old/new policies governor set
   as ondemand.
 - Because governors matched, we skip governor initialization and return
   after calling __cpufreq_governor(CPUFREQ_GOV_LIMITS). Because the
   governor wasn't initialized for this policy, it returned -EBUSY.
 - cpufreq_init_policy() exits the policy on this error, but doesn't
   destroy it properly (should be fixed separately).
 - And so we enter a scenario where the policy isn't completely
   initialized but used.

Fix this by setting policy->governor to NULL while restoring the policy.

Reported-and-tested-by: Pi-Cheng Chen <pi-cheng.chen@linaro.org>
Reported-and-tested-by: "Jon Medhurst (Tixy)" <tixy@linaro.org>
Reported-and-tested-by: Steven Rostedt <rostedt@goodmis.org>
Fixes: 18bf3a124e (cpufreq: Mark policy->governor = NULL for inactive policies)
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-07-10 01:36:27 +02:00
Ralf Baechle
0bb383a2d8 MIPS, CPUFREQ: Fix spelling of Institute.
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2015-07-07 20:59:42 +02:00
Linus Torvalds
75462c8a87 Merge tag 'module-builtin_driver-v4.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux
Pull module_platform_driver replacement from Paul Gortmaker:
 "Replace module_platform_driver with builtin_platform driver in non
  modules.

  We see an increasing number of non-modular drivers using
  modular_driver() type register functions.  There are several downsides
  to letting this continue unchecked:

   - The code can appear modular to a reader of the code, and they won't
     know if the code really is modular without checking the Makefile
     and Kconfig to see if compilation is governed by a bool or
     tristate.

   - Coders of drivers may be tempted to code up an __exit function that
     is never used, just in order to satisfy the required three args of
     the modular registration function.

   - Non-modular code ends up including the <module.h> which increases
     CPP overhead that they don't need.

   - It hinders us from performing better separation of the module init
     code and the generic init code.

  So here we introduce similar macros for builtin drivers.  Then we
  convert builtin drivers (controlled by a bool Kconfig) by making the
  following type of mapping:

    module_platform_driver()       --->  builtin_platform_driver()
    module_platform_driver_probe() --->  builtin_platform_driver_probe().

  The set of drivers that are converted here are just the ones that
  showed up as relying on an implicit include of <module.h> during a
  pending header cleanup.  So we convert them here vs adding an include
  of <module.h> to non-modular code to avoid compile fails.  Additonal
  conversions can be done asynchronously at any time.

  Once again, an unused module_exit function that is removed here
  appears in the diffstat as an outlier wrt all the other changes"

* tag 'module-builtin_driver-v4.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux:
  drivers/clk: convert sunxi/clk-mod0.c to use builtin_platform_driver
  drivers/power: Convert non-modular syscon-reboot to use builtin_platform_driver
  drivers/soc: Convert non-modular soc-realview to use builtin_platform_driver
  drivers/soc: Convert non-modular tegra/pmc to use builtin_platform_driver
  drivers/cpufreq: Convert non-modular s5pv210-cpufreq.c to use builtin_platform_driver
  drivers/cpuidle: Convert non-modular drivers to use builtin_platform_driver
  drivers/platform: Convert non-modular pdev_bus to use builtin_platform_driver
  platform_device: better support builtin boilerplate avoidance
2015-07-02 10:42:13 -07:00
Linus Torvalds
9d86b4128c Merge tag 'module-implicit-v4.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux
Pull implicit module.h fixes from Paul Gortmaker:
 "Fix up implicit <module.h> users that will break later.

  The files changed here are simply modular source files that are
  implicitly relying on <module.h> being present.  We fix them up now,
  so that we can decouple some of the module related init code from the
  core init code in the future.

  The addition of the module.h include to several files here is also a
  no-op from a code generation point of view, else there would already
  be compile issues with these files today.

  There may be lots more implicit includes of <module.h> in tree, but
  these are the ones that extensive build test coverage has shown that
  must be fixed in order to avoid build breakage fallout for the pending
  module.h <---> init.h code relocation we desire to complete"

* tag 'module-implicit-v4.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux:
  frv: add module.h to mb93090-mb00/flash.c to avoid compile fail
  drivers/cpufreq: include <module.h> for modular exynos-cpufreq.c code
  drivers/staging: include <module.h> for modular android tegra_ion code
  crypto/asymmetric_keys: pkcs7_key_type needs module.h
  sh: mach-highlander/psw.c is tristate and should use module.h
  drivers/regulator: include <module.h> for modular max77802 code
  drivers/pcmcia: include <module.h> for modular xxs1500_ss code
  drivers/hsi: include <module.h> for modular omap_ssi code
  drivers/gpu: include <module.h> for modular rockchip code
  drivers/gpio: include <module.h> for modular crystalcove code
  drivers/clk: include <module.h> for clk-max77xxx modular code
2015-07-02 10:25:22 -07:00
Linus Torvalds
5f1201d515 Merge tag 'clk-for-linus-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux
Pull clock framework updates from Michael Turquette:
 "The changes to the common clock framework for 4.2 are dominated by new
  drivers and updates to existing ones, as usual.

  There are some fixes to the framework itself and several cleanups for
  sparse warnings, etc"

* tag 'clk-for-linus-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux: (135 commits)
  clk: stm32: Add clock driver for STM32F4[23]xxx devices
  dt-bindings: Document the STM32F4 clock bindings
  cpufreq: exynos: remove Exynos4210 specific cpufreq driver support
  ARM: Exynos: switch to using generic cpufreq driver for Exynos4210
  clk: samsung: exynos4: add cpu clock configuration data and instantiate cpu clock
  clk: samsung: add infrastructure to register cpu clocks
  clk: add CLK_RECALC_NEW_RATES clock flag for Exynos cpu clock support
  doc: dt: add documentation for lpc1850-ccu clk driver
  clk: add lpc18xx ccu clk driver
  doc: dt: add documentation for lpc1850-cgu clk driver
  clk: add lpc18xx cgu clk driver
  clk: keystone: add support for post divider register for main pll
  clk: mvebu: flag the crypto clk as CLK_IGNORE_UNUSED
  clk: cygnus: remove Cygnus dummy clock binding
  clk: cygnus: add clock support for Broadcom Cygnus
  clk: Change bcm clocks build dependency
  clk: iproc: add initial common clock support
  clk: iproc: define Broadcom iProc clock binding
  MAINTAINERS: update email for Michael Turquette
  clk: meson: add some error handling in meson_clk_register_cpu()
  ...
2015-07-01 19:22:00 -07:00
Linus Torvalds
78c10e556e Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
Pull MIPS updates from Ralf Baechle:

 - Improvements to the tlb_dump code
 - KVM fixes
 - Add support for appended DTB
 - Minor improvements to the R12000 support
 - Minor improvements to the R12000 support
 - Various platform improvments for BCM47xx
 - The usual pile of minor cleanups
 - A number of BPF fixes and improvments
 - Some improvments to the support for R3000 and DECstations
 - Some improvments to the ATH79 platform support
 - A major patchset for the JZ4740 SOC adding support for the CI20 platform
 - Add support for the Pistachio SOC
 - Minor BMIPS/BCM63xx platform support improvments.
 - Avoid "SYNC 0" as memory barrier when unlocking spinlocks
 - Add support for the XWR-1750 board.
 - Paul's __cpuinit/__cpuinitdata cleanups.
 - New Malta CPU board support large memory so enable ZONE_DMA32.

* 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus: (131 commits)
  MIPS: spinlock: Adjust arch_spin_lock back-off time
  MIPS: asmmacro: Ensure 64-bit FP registers are used with MSA
  MIPS: BCM47xx: Simplify handling SPROM revisions
  MIPS: Cobalt Don't use module_init in non-modular MTD registration.
  MIPS: BCM47xx: Move NVRAM driver to the drivers/firmware/
  MIPS: use for_each_sg()
  MIPS: BCM47xx: Don't select BCMA_HOST_PCI
  MIPS: BCM47xx: Add helper variable for storing NVRAM length
  MIPS: IRQ/IP27: Move IRQ allocation API to platform code.
  MIPS: Replace smp_mb with release barrier function in unlocks.
  MIPS: i8259: DT support
  MIPS: Malta: Basic DT plumbing
  MIPS: include errno.h for ENODEV in mips-cm.h
  MIPS: Define GCR_GIC_STATUS register fields
  MIPS: BPF: Introduce BPF ASM helpers
  MIPS: BPF: Use BPF register names to describe the ABI
  MIPS: BPF: Move register definition to the BPF header
  MIPS: net: BPF: Replace RSIZE with SZREG
  MIPS: BPF: Free up some callee-saved registers
  MIPS: Xtalk: Update xwidget.h with known Xtalk device numbers
  ...
2015-06-27 12:44:34 -07:00
Linus Torvalds
43c9fad942 Merge tag 'pm+acpi-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management and ACPI updates from Rafael Wysocki:
 "The rework of backlight interface selection API from Hans de Goede
  stands out from the number of commits and the number of affected
  places perspective.  The cpufreq core fixes from Viresh Kumar are
  quite significant too as far as the number of commits goes and because
  they should reduce CPU online/offline overhead quite a bit in the
  majority of cases.

  From the new featues point of view, the ACPICA update (to upstream
  revision 20150515) adding support for new ACPI 6 material to ACPICA is
  the one that matters the most as some new significant features will be
  based on it going forward.  Also included is an update of the ACPI
  device power management core to follow ACPI 6 (which in turn reflects
  the Windows' device PM implementation), a PM core extension to support
  wakeup interrupts in a more generic way and support for the ACPI _CCA
  device configuration object.

  The rest is mostly fixes and cleanups all over and some documentation
  updates, including new DT bindings for Operating Performance Points.

  There is one fix for a regression introduced in the 4.1 cycle, but it
  adds quite a number of lines of code, it wasn't really ready before
  Thursday and you were on vacation, so I refrained from pushing it on
  the last minute for 4.1.

  Specifics:

   - ACPICA update to upstream revision 20150515 including basic support
     for ACPI 6 features: new ACPI tables introduced by ACPI 6 (STAO,
     XENV, WPBT, NFIT, IORT), changes related to the other tables (DTRM,
     FADT, LPIT, MADT), new predefined names (_BTH, _CR3, _DSD, _LPI,
     _MTL, _PRR, _RDI, _RST, _TFP, _TSN), fixes and cleanups (Bob Moore,
     Lv Zheng).

   - ACPI device power management core code update to follow ACPI 6
     which reflects the ACPI device power management implementation in
     Windows (Rafael J Wysocki).

   - rework of the backlight interface selection logic to reduce the
     number of kernel command line options and improve the handling of
     DMI quirks that may be involved in that and to make the code
     generally more straightforward (Hans de Goede).

   - fixes for the ACPI Embedded Controller (EC) driver related to the
     handling of EC transactions (Lv Zheng).

   - fix for a regression related to the ACPI resources management and
     resulting from a recent change of ACPI initialization code ordering
     (Rafael J Wysocki).

   - fix for a system initialization regression related to ACPI
     introduced during the 3.14 cycle and caused by running the code
     that switches the platform over to the ACPI mode too early in the
     initialization sequence (Rafael J Wysocki).

   - support for the ACPI _CCA device configuration object related to
     DMA cache coherence (Suravee Suthikulpanit).

   - ACPI/APEI fixes and cleanups (Jiri Kosina, Borislav Petkov).

   - ACPI battery driver cleanups (Luis Henriques, Mathias Krause).

   - ACPI processor driver cleanups (Hanjun Guo).

   - cleanups and documentation update related to the ACPI device
     properties interface based on _DSD (Rafael J Wysocki).

   - ACPI device power management fixes (Rafael J Wysocki).

   - assorted cleanups related to ACPI (Dominik Brodowski, Fabian
     Frederick, Lorenzo Pieralisi, Mathias Krause, Rafael J Wysocki).

   - fix for a long-standing issue causing General Protection Faults to
     be generated occasionally on return to user space after resume from
     ACPI-based suspend-to-RAM on 32-bit x86 (Ingo Molnar).

   - fix to make the suspend core code return -EBUSY consistently in all
     cases when system suspend is aborted due to wakeup detection (Ruchi
     Kandoi).

   - support for automated device wakeup IRQ handling allowing drivers
     to make their PM support more starightforward (Tony Lindgren).

   - new tracepoints for suspend-to-idle tracing and rework of the
     prepare/complete callbacks tracing in the PM core (Todd E Brandt,
     Rafael J Wysocki).

   - wakeup sources framework enhancements (Jin Qian).

   - new macro for noirq system PM callbacks (Grygorii Strashko).

   - assorted cleanups related to system suspend (Rafael J Wysocki).

   - cpuidle core cleanups to make the code more efficient (Rafael J
     Wysocki).

   - powernv/pseries cpuidle driver update (Shilpasri G Bhat).

   - cpufreq core fixes related to CPU online/offline that should reduce
     the overhead of these operations quite a bit, unless the CPU in
     question is physically going away (Viresh Kumar, Saravana Kannan).

   - serialization of cpufreq governor callbacks to avoid race
     conditions in some cases (Viresh Kumar).

   - intel_pstate driver fixes and cleanups (Doug Smythies, Prarit
     Bhargava, Joe Konno).

   - cpufreq driver (arm_big_little, cpufreq-dt, qoriq) updates (Sudeep
     Holla, Felipe Balbi, Tang Yuantian).

   - assorted cleanups in cpufreq drivers and core (Shailendra Verma,
     Fabian Frederick, Wang Long).

   - new Device Tree bindings for representing Operating Performance
     Points (Viresh Kumar).

   - updates for the common clock operations support code in the PM core
     (Rajendra Nayak, Geert Uytterhoeven).

   - PM domains core code update (Geert Uytterhoeven).

   - Intel Knights Landing support for the RAPL (Running Average Power
     Limit) power capping driver (Dasaratharaman Chandramouli).

   - fixes related to the floor frequency setting on Atom SoCs in the
     RAPL power capping driver (Ajay Thomas).

   - runtime PM framework documentation update (Ben Dooks).

   - cpupower tool fix (Herton R Krzesinski)"

* tag 'pm+acpi-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (194 commits)
  cpuidle: powernv/pseries: Auto-promotion of snooze to deeper idle state
  x86: Load __USER_DS into DS/ES after resume
  PM / OPP: Add binding for 'opp-suspend'
  PM / OPP: Allow multiple OPP tables to be passed via DT
  PM / OPP: Add new bindings to address shortcomings of existing bindings
  ACPI: Constify ACPI device IDs in documentation
  ACPI / enumeration: Document the rules regarding the PRP0001 device ID
  ACPI / video: Make acpi_video_unregister_backlight() private
  acpi-video-detect: Remove old API
  toshiba-acpi: Port to new backlight interface selection API
  thinkpad-acpi: Port to new backlight interface selection API
  sony-laptop: Port to new backlight interface selection API
  samsung-laptop: Port to new backlight interface selection API
  msi-wmi: Port to new backlight interface selection API
  msi-laptop: Port to new backlight interface selection API
  intel-oaktrail: Port to new backlight interface selection API
  ideapad-laptop: Port to new backlight interface selection API
  fujitsu-laptop: Port to new backlight interface selection API
  eeepc-laptop: Port to new backlight interface selection API
  dell-wmi: Port to new backlight interface selection API
  ...
2015-06-23 14:18:07 -07:00
Linus Torvalds
d70b3ef54c Merge branch 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 core updates from Ingo Molnar:
 "There were so many changes in the x86/asm, x86/apic and x86/mm topics
  in this cycle that the topical separation of -tip broke down somewhat -
  so the result is a more traditional architecture pull request,
  collected into the 'x86/core' topic.

  The topics were still maintained separately as far as possible, so
  bisectability and conceptual separation should still be pretty good -
  but there were a handful of merge points to avoid excessive
  dependencies (and conflicts) that would have been poorly tested in the
  end.

  The next cycle will hopefully be much more quiet (or at least will
  have fewer dependencies).

  The main changes in this cycle were:

   * x86/apic changes, with related IRQ core changes: (Jiang Liu, Thomas
     Gleixner)

     - This is the second and most intrusive part of changes to the x86
       interrupt handling - full conversion to hierarchical interrupt
       domains:

          [IOAPIC domain]   -----
                                 |
          [MSI domain]      --------[Remapping domain] ----- [ Vector domain ]
                                 |   (optional)          |
          [HPET MSI domain] -----                        |
                                                         |
          [DMAR domain]     -----------------------------
                                                         |
          [Legacy domain]   -----------------------------

       This now reflects the actual hardware and allowed us to distangle
       the domain specific code from the underlying parent domain, which
       can be optional in the case of interrupt remapping.  It's a clear
       separation of functionality and removes quite some duct tape
       constructs which plugged the remap code between ioapic/msi/hpet
       and the vector management.

     - Intel IOMMU IRQ remapping enhancements, to allow direct interrupt
       injection into guests (Feng Wu)

   * x86/asm changes:

     - Tons of cleanups and small speedups, micro-optimizations.  This
       is in preparation to move a good chunk of the low level entry
       code from assembly to C code (Denys Vlasenko, Andy Lutomirski,
       Brian Gerst)

     - Moved all system entry related code to a new home under
       arch/x86/entry/ (Ingo Molnar)

     - Removal of the fragile and ugly CFI dwarf debuginfo annotations.
       Conversion to C will reintroduce many of them - but meanwhile
       they are only getting in the way, and the upstream kernel does
       not rely on them (Ingo Molnar)

     - NOP handling refinements. (Borislav Petkov)

   * x86/mm changes:

     - Big PAT and MTRR rework: making the code more robust and
       preparing to phase out exposing direct MTRR interfaces to drivers -
       in favor of using PAT driven interfaces (Toshi Kani, Luis R
       Rodriguez, Borislav Petkov)

     - New ioremap_wt()/set_memory_wt() interfaces to support
       Write-Through cached memory mappings.  This is especially
       important for good performance on NVDIMM hardware (Toshi Kani)

   * x86/ras changes:

     - Add support for deferred errors on AMD (Aravind Gopalakrishnan)

       This is an important RAS feature which adds hardware support for
       poisoned data.  That means roughly that the hardware marks data
       which it has detected as corrupted but wasn't able to correct, as
       poisoned data and raises an APIC interrupt to signal that in the
       form of a deferred error.  It is the OS's responsibility then to
       take proper recovery action and thus prolonge system lifetime as
       far as possible.

     - Add support for Intel "Local MCE"s: upcoming CPUs will support
       CPU-local MCE interrupts, as opposed to the traditional system-
       wide broadcasted MCE interrupts (Ashok Raj)

     - Misc cleanups (Borislav Petkov)

   * x86/platform changes:

     - Intel Atom SoC updates

  ... and lots of other cleanups, fixlets and other changes - see the
  shortlog and the Git log for details"

* 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (222 commits)
  x86/hpet: Use proper hpet device number for MSI allocation
  x86/hpet: Check for irq==0 when allocating hpet MSI interrupts
  x86/mm/pat, drivers/infiniband/ipath: Use arch_phys_wc_add() and require PAT disabled
  x86/mm/pat, drivers/media/ivtv: Use arch_phys_wc_add() and require PAT disabled
  x86/platform/intel/baytrail: Add comments about why we disabled HPET on Baytrail
  genirq: Prevent crash in irq_move_irq()
  genirq: Enhance irq_data_to_desc() to support hierarchy irqdomain
  iommu, x86: Properly handle posted interrupts for IOMMU hotplug
  iommu, x86: Provide irq_remapping_cap() interface
  iommu, x86: Setup Posted-Interrupts capability for Intel iommu
  iommu, x86: Add cap_pi_support() to detect VT-d PI capability
  iommu, x86: Avoid migrating VT-d posted interrupts
  iommu, x86: Save the mode (posted or remapped) of an IRTE
  iommu, x86: Implement irq_set_vcpu_affinity for intel_ir_chip
  iommu: dmar: Provide helper to copy shared irte fields
  iommu: dmar: Extend struct irte for VT-d Posted-Interrupts
  iommu: Add new member capability to struct irq_remap_ops
  x86/asm/entry/64: Disentangle error_entry/exit gsbase/ebx/usermode code
  x86/asm/entry/32: Shorten __audit_syscall_entry() args preparation
  x86/asm/entry/32: Explain reloading of registers after __audit_syscall_entry()
  ...
2015-06-22 17:59:09 -07:00
Huacai Chen
30ad29bb48 MIPS: Loongson: Naming style cleanup and rework
Currently, code of Loongson-2/3 is under loongson directory and code of
Loongson-1 is under loongson1 directory. Besides, there are Kconfig
options such as MACH_LOONGSON and MACH_LOONGSON1. This naming style is
very ugly and confusing. Since Loongson-2/3 are both 64-bit general-
purpose CPU while Loongson-1 is 32-bit SoC, we rename both file names
and Kconfig symbols from loongson/loongson1 to loongson64/loongson32.

[ralf@linux-mips.org: Resolve a number of simple conflicts.]

Signed-off-by: Huacai Chen <chenhc@lemote.com>
Cc: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Cc: Kelvin Cheung <keguang.zhang@gmail.com>
Patchwork: https://patchwork.linux-mips.org/patch/9790/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2015-06-21 21:53:59 +02:00
Thomas Abraham
8eb92ab68f cpufreq: exynos: remove Exynos4210 specific cpufreq driver support
Exynos4210 based platforms have switched over to use generic
cpufreq driver for cpufreq functionality. So the Exynos
specific cpufreq support for these platforms can be removed.

Changes by Bartlomiej:
- dropped Exynos5250 support removal for now
- updated exynos-cpufreq.[c,h]

Cc: Javier Martinez Canillas <javier.martinez@collabora.co.uk>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Thomas Abraham <thomas.ab@samsung.com>
Signed-off-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Signed-off-by: Michael Turquette <mturquette@baylibre.com>
2015-06-20 12:17:44 -07:00
Felipe Balbi
07949bf9c6 cpufreq: dt: allow driver to boot automatically
by adding the missing MODULE_ALIAS(), cpufreq-dt
can be autoloaded by udev/systemd.

Signed-off-by: Felipe Balbi <balbi@ti.com>
Acked-by: Nishanth Menon <nm@ti.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-06-17 00:02:34 +02:00
Prarit Bhargava
7180dddf7c intel_pstate: Fix overflow in busy_scaled due to long delay
The kernel may delay interrupts for a long time which can result in timers
being delayed. If this occurs the intel_pstate driver will crash with a
divide by zero error:

divide error: 0000 [#1] SMP
Modules linked in: btrfs zlib_deflate raid6_pq xor msdos ext4 mbcache jbd2 binfmt_misc arc4 md4 nls_utf8 cifs dns_resolver tcp_lp bnep bluetooth rfkill fuse dm_service_time iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi nf_conntrack_netbios_ns nf_conntrack_broadcast nf_conntrack_ftp ip6t_rpfilter ip6t_REJECT ipt_REJECT xt_conntrack ebtable_nat ebtable_broute bridge stp llc ebtable_filter ebtables ip6table_nat nf_conntrack_ipv6 nf_defrag_ipv6 nf_nat_ipv6 ip6table_mangle ip6table_security ip6table_raw ip6table_filter ip6_tables iptable_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_nat_ipv4 nf_nat nf_conntrack iptable_mangle iptable_security iptable_raw iptable_filter ip_tables intel_powerclamp coretemp vfat fat kvm_intel iTCO_wdt iTCO_vendor_support ipmi_devintf sr_mod kvm crct10dif_pclmul
 crc32_pclmul crc32c_intel ghash_clmulni_intel aesni_intel cdc_ether lrw usbnet cdrom mii gf128mul glue_helper ablk_helper cryptd lpc_ich mfd_core pcspkr sb_edac edac_core ipmi_si ipmi_msghandler ioatdma wmi shpchp acpi_pad nfsd auth_rpcgss nfs_acl lockd uinput dm_multipath sunrpc xfs libcrc32c usb_storage sd_mod crc_t10dif crct10dif_common ixgbe mgag200 syscopyarea sysfillrect sysimgblt mdio drm_kms_helper ttm igb drm ptp pps_core dca i2c_algo_bit megaraid_sas i2c_core dm_mirror dm_region_hash dm_log dm_mod
CPU: 113 PID: 0 Comm: swapper/113 Tainted: G        W   --------------   3.10.0-229.1.2.el7.x86_64 #1
Hardware name: IBM x3950 X6 -[3837AC2]-/00FN827, BIOS -[A8E112BUS-1.00]- 08/27/2014
task: ffff880fe8abe660 ti: ffff880fe8ae4000 task.ti: ffff880fe8ae4000
RIP: 0010:[<ffffffff814a9279>]  [<ffffffff814a9279>] intel_pstate_timer_func+0x179/0x3d0
RSP: 0018:ffff883fff4e3db8  EFLAGS: 00010206
RAX: 0000000027100000 RBX: ffff883fe6965100 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000010 RDI: 000000002e53632d
RBP: ffff883fff4e3e20 R08: 000e6f69a5a125c0 R09: ffff883fe84ec001
R10: 0000000000000002 R11: 0000000000000005 R12: 00000000000049f5
R13: 0000000000271000 R14: 00000000000049f5 R15: 0000000000000246
FS:  0000000000000000(0000) GS:ffff883fff4e0000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f7668601000 CR3: 000000000190a000 CR4: 00000000001407e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Stack:
 ffff883fff4e3e58 ffffffff81099dc1 0000000000000086 0000000000000071
 ffff883fff4f3680 0000000000000071 fbdc8a965e33afee ffffffff810b69dd
 ffff883fe84ec000 ffff883fe6965108 0000000000000100 ffffffff814a9100
Call Trace:
 <IRQ>

 [<ffffffff81099dc1>] ? run_posix_cpu_timers+0x51/0x840
 [<ffffffff810b69dd>] ? trigger_load_balance+0x5d/0x200
 [<ffffffff814a9100>] ? pid_param_set+0x130/0x130
 [<ffffffff8107df56>] call_timer_fn+0x36/0x110
 [<ffffffff814a9100>] ? pid_param_set+0x130/0x130
 [<ffffffff8107fdcf>] run_timer_softirq+0x21f/0x320
 [<ffffffff81077b2f>] __do_softirq+0xef/0x280
 [<ffffffff816156dc>] call_softirq+0x1c/0x30
 [<ffffffff81015d95>] do_softirq+0x65/0xa0
 [<ffffffff81077ec5>] irq_exit+0x115/0x120
 [<ffffffff81616355>] smp_apic_timer_interrupt+0x45/0x60
 [<ffffffff81614a1d>] apic_timer_interrupt+0x6d/0x80
 <EOI>

 [<ffffffff814a9c32>] ? cpuidle_enter_state+0x52/0xc0
 [<ffffffff814a9c28>] ? cpuidle_enter_state+0x48/0xc0
 [<ffffffff814a9d65>] cpuidle_idle_call+0xc5/0x200
 [<ffffffff8101d14e>] arch_cpu_idle+0xe/0x30
 [<ffffffff810c67c1>] cpu_startup_entry+0xf1/0x290
 [<ffffffff8104228a>] start_secondary+0x1ba/0x230
Code: 42 0f 00 45 89 e6 48 01 c2 43 8d 44 6d 00 39 d0 73 26 49 c1 e5 08 89 d2 4d 63 f4 49 63 c5 48 c1 e2 08 48 c1 e0 08 48 63 ca 48 99 <48> f7 f9 48 98 4c 0f af f0 49 c1 ee 08 8b 43 78 c1 e0 08 44 29
RIP  [<ffffffff814a9279>] intel_pstate_timer_func+0x179/0x3d0
 RSP <ffff883fff4e3db8>

The kernel values for cpudata for CPU 113 were:

struct cpudata {
  cpu = 113,
  timer = {
    entry = {
      next = 0x0,
      prev = 0xdead000000200200
    },
    expires = 8357799745,
    base = 0xffff883fe84ec001,
    function = 0xffffffff814a9100 <intel_pstate_timer_func>,
    data = 18446612406765768960,
<snip>
    i_gain = 0,
    d_gain = 0,
    deadband = 0,
    last_err = 22489
  },
  last_sample_time = {
    tv64 = 4063132438017305
  },
  prev_aperf = 287326796397463,
  prev_mperf = 251427432090198,
  sample = {
    core_pct_busy = 23081,
    aperf = 2937407,
    mperf = 3257884,
    freq = 2524484,
    time = {
      tv64 = 4063149215234118
    }
  }
}

which results in the time between samples = last_sample_time - sample.time
= 4063149215234118 - 4063132438017305 = 16777216813 which is 16.777 seconds.

The duration between reads of the APERF and MPERF registers overflowed a s32
sized integer in intel_pstate_get_scaled_busy()'s call to div_fp().  The result
is that int_tofp(duration_us) == 0, and the kernel attempts to divide by 0.

While the kernel shouldn't be delaying for a long time, it can and does
happen and the intel_pstate driver should not panic in this situation.  This
patch changes the div_fp() function to use div64_s64() to allow for "long"
division.  This will avoid the overflow condition on long delays.

[v2]: use div64_s64() in div_fp()

Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-06-16 22:52:45 +02:00
Paul Gortmaker
5b64127e05 drivers/cpufreq: Convert non-modular s5pv210-cpufreq.c to use builtin_platform_driver
This file depends on a Kconfig option which is a bool, so
we use the appropriate registration function, which avoids us
relying on an implicit inclusion of <module.h> which we are
doing currently.

While this currently works, we really don't want to be including
the module.h header in non-modular code, which we'd be forced
to do, pending some upcoming code relocation from init.h into
module.h.  So we fix it now by using the non-modular equivalent.

Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Kukjin Kim <kgene@kernel.org>
Cc: linux-pm@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2015-06-16 14:12:38 -04:00
Paul Gortmaker
743492ccd5 drivers/cpufreq: include <module.h> for modular exynos-cpufreq.c code
This file is built off of a tristate Kconfig option ("ARM_EXYNOS_CPUFREQ")
and also contains modular function calls so it should explicitly include
module.h to avoid compile breakage during pending header shuffles.

Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Kukjin Kim <kgene@kernel.org>
Cc: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Acked-by: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Cc: linux-pm@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-samsung-soc@vger.kernel.org
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2015-06-16 14:12:26 -04:00
Tang Yuantian
8a95c1441c cpufreq: qoriq: optimize the CPU frequency switching time
Each time the CPU switches its frequency, the clock nodes in
DTS are walked through to find proper clock source. This is
very time-consuming, for example, it is up to 500+ us on T4240.
Besides, switching time varies from clock to clock.
To optimize this, each input clock of CPU is buffered, so that
it can be picked up instantly when needed.

Since for each CPU each input clock is stored in a pointer
which takes 4 or 8 bytes memory and normally there are several
input clocks per CPU, that will not take much memory as well.

Signed-off-by: Tang Yuantian <Yuantian.Tang@freescale.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-06-15 15:47:28 +02:00
Shailendra Verma
431920edfd cpufreq: gx-suspmod: Fix two typos in two comments
Signed-off-by: Shailendra Verma <shailendra.capricorn@gmail.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-06-15 15:46:15 +02:00
Shailendra Verma
97155e0336 cpufreq: nforce2: Fix typo in comment to function nforce2_init()
Signed-off-by: Shailendra Verma <shailendra.capricorn@gmail.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-06-15 15:45:24 +02:00
Viresh Kumar
732b6d617a cpufreq: governor: Serialize governor callbacks
There are several races reported in cpufreq core around governors (only
ondemand and conservative) by different people.

There are at least two race scenarios present in governor code:
 (a) Concurrent access/updates of governor internal structures.

 It is possible that fields such as 'dbs_data->usage_count', etc.  are
 accessed simultaneously for different policies using same governor
 structure (i.e. CPUFREQ_HAVE_GOVERNOR_PER_POLICY flag unset). And
 because of this we can dereference bad pointers.

 For example consider a system with two CPUs with separate 'struct
 cpufreq_policy' instances. CPU0 governor: ondemand and CPU1: powersave.
 CPU0 switching to powersave and CPU1 to ondemand:
	CPU0				CPU1

	store*				store*

	cpufreq_governor_exit()		cpufreq_governor_init()
					dbs_data = cdata->gdbs_data;

	if (!--dbs_data->usage_count)
		kfree(dbs_data);

					dbs_data->usage_count++;
					*Bad pointer dereference*

 There are other races possible between EXIT and START/STOP/LIMIT as
 well. Its really complicated.

 (b) Switching governor state in bad sequence:

 For example trying to switch a governor to START state, when the
 governor is in EXIT state. There are some checks present in
 __cpufreq_governor() but they aren't sufficient as they compare events
 against 'policy->governor_enabled', where as we need to take governor's
 state into account, which can be used by multiple policies.

These two issues need to be solved separately and the responsibility
should be properly divided between cpufreq and governor core.

The first problem is more about the governor core, as it needs to
protect its structures properly. And the second problem should be fixed
in cpufreq core instead of governor, as its all about sequence of
events.

This patch is trying to solve only the first problem.

There are two types of data we need to protect,
- 'struct common_dbs_data': No matter what, there is going to be a
  single copy of this per governor.
- 'struct dbs_data': With CPUFREQ_HAVE_GOVERNOR_PER_POLICY flag set, we
  will have per-policy copy of this data, otherwise a single copy.

Because of such complexities, the mutex present in 'struct dbs_data' is
insufficient to solve our problem. For example we need to protect
fetching of 'dbs_data' from different structures at the beginning of
cpufreq_governor_dbs(), to make sure it isn't currently being updated.

This can be fixed if we can guarantee serialization of event parsing
code for an individual governor. This is best solved with a mutex per
governor, and the placeholder for that is 'struct common_dbs_data'.

And so this patch moves the mutex from 'struct dbs_data' to 'struct
common_dbs_data' and takes it at the beginning and drops it at the end
of cpufreq_governor_dbs().

Tested with and without following configuration options:

CONFIG_LOCKDEP_SUPPORT=y
CONFIG_DEBUG_RT_MUTEXES=y
CONFIG_DEBUG_PI_LIST=y
CONFIG_DEBUG_SPINLOCK=y
CONFIG_DEBUG_MUTEXES=y
CONFIG_DEBUG_LOCK_ALLOC=y
CONFIG_PROVE_LOCKING=y
CONFIG_LOCKDEP=y
CONFIG_DEBUG_ATOMIC_SLEEP=y

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-06-15 15:42:53 +02:00
Viresh Kumar
714a2d9c87 cpufreq: governor: split cpufreq_governor_dbs()
cpufreq_governor_dbs() is hardly readable, it is just too big and
complicated. Lets make it more readable by splitting out event specific
routines.

Order of statements is changed at few places, but that shouldn't bring
any functional change.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-06-15 15:39:07 +02:00
Viresh Kumar
8e0484d2b3 cpufreq: governor: register notifier from cs_init()
Notifiers are required only for conservative governor and the common
governor code is unnecessarily polluted with that. Handle that from
cs_init/exit() instead of cpufreq_governor_dbs().

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-06-15 15:37:12 +02:00
Viresh Kumar
3782902983 cpufreq: Remove cpufreq_update_policy()
cpufreq_update_policy() was kept as a separate routine earlier as it was
handling migration of sysfs directories, which isn't the case anymore.
It is only updating policy->cpu now and is called by a single caller.

The WARN_ON() isn't really required anymore, as we are just updating the
cpu now, not moving the sysfs directories.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-06-11 01:03:04 +02:00
Viresh Kumar
9591becbf2 cpufreq: Restart governor as soon as possible
__cpufreq_remove_dev_finish() is doing two things today:
- Restarts the governor if some CPUs from concerned policy are still
  online.
- Frees the policy if all CPUs are offline.

The first task of restarting the governor can be moved to
__cpufreq_remove_dev_prepare() to restart the governor early. There is
no race between _prepare() and _finish() as they would be handling
completely different cases. _finish() will only be required if we are
going to free the policy and that has nothing to do with restarting the
governor.

Original-by: Saravana Kannan <skannan@codeaurora.org>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-06-11 01:02:45 +02:00
Viresh Kumar
3654c5cc81 cpufreq: Call cpufreq_policy_put_kobj() from cpufreq_policy_free()
cpufreq_policy_put_kobj() is actually part of freeing the policy and can
be called from cpufreq_policy_free() directly instead of a separate
call.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2015-06-11 01:02:40 +02:00