Not really the solution to the problem, but at least it confines the
mess in the core code and allows to get rid of the create/destroy_irq
variants from hell, i.e. 3 implementations with different semantics
plus the x86 specific variants __create_irqs and create_irq_nr
which have been invented in another circle of hell.
x86 : x86 should be converted to irq domains and I'm deliberately
making it impossible to do the multi-vector MSI support by
adding more crap to the current mess. It's not that hard to do
and I'm really tired of the trainwrecks which have been invented
by baindaid engineering so far. Any attempt to do multi-vector
MSI or ioapic hotplug without converting to irq domains is NAKed
hereby.
tile: Might use irq domains as well, but it has a very limited
interrupt space, so handling it via this functionality might be
the right thing to do even in the long run.
ia64: That's an hopeless case, as I doubt that anyone has the stomach
to rewrite the homebrewn dynamic allocation facilities. I stared
at it for a couple of hours and gave up. The create/destroy_irq
mess could be made private to itanic right away if there
wouldn't be the iommu/dmar driver being shared with x86. So to
do that I'm going to add a separate ia64 specific implementation
later in order not to deep-six itanic right away.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Grant Likely <grant.likely@linaro.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: x86@kernel.org
Link: http://lkml.kernel.org/r/20140507154334.208629358@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Till reported that the spurious interrupt detection of threaded
interrupts is broken in two ways:
- note_interrupt() is called for each action thread of a shared
interrupt line. That's wrong as we are only interested whether none
of the device drivers felt responsible for the interrupt, but by
calling multiple times for a single interrupt line we account
IRQ_NONE even if one of the drivers felt responsible.
- note_interrupt() when called from the thread handler is not
serialized. That leaves the members of irq_desc which are used for
the spurious detection unprotected.
To solve this we need to defer the spurious detection of a threaded
interrupt to the next hardware interrupt context where we have
implicit serialization.
If note_interrupt is called with action_ret == IRQ_WAKE_THREAD, we
check whether the previous interrupt requested a deferred check. If
not, we request a deferred check for the next hardware interrupt and
return.
If set, we check whether one of the interrupt threads signaled
success. Depending on this information we feed the result into the
spurious detector.
If one primary handler of a shared interrupt returns IRQ_HANDLED we
disable the deferred check of irq threads on the same line, as we have
found at least one device driver who cared.
Reported-by: Till Straumann <strauman@slac.stanford.edu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Austin Schuh <austin@peloton-tech.com>
Cc: Oliver Hartkopp <socketcan@hartkopp.net>
Cc: Wolfgang Grandegger <wg@grandegger.com>
Cc: Pavel Pisa <pisa@cmp.felk.cvut.cz>
Cc: Marc Kleine-Budde <mkl@pengutronix.de>
Cc: linux-can@vger.kernel.org
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1303071450130.22263@ionos
On x86 the allocation of irq descriptors may allocate interrupts which
are in the range of the GSI interrupts. That's wrong as those
interrupts are hardwired and we don't have the irq domain translation
like PPC. So one of these interrupts can be hooked up later to one of
the devices which are hard wired to it and the io_apic init code for
that particular interrupt line happily reuses that descriptor with a
completely different configuration so hell breaks lose.
Inside x86 we allocate dynamic interrupts from above nr_gsi_irqs,
except for a few usage sites which have not yet blown up in our face
for whatever reason. But for drivers which need an irq range, like the
GPIO drivers, we have no limit in place and we don't want to expose
such a detail to a driver.
To cure this introduce a function which an architecture can implement
to impose a lower bound on the dynamic interrupt allocations.
Implement it for x86 and set the lower bound to nr_gsi_irqs, which is
the end of the hardwired interrupt space, so all dynamic allocations
happen above.
That not only allows the GPIO driver to work sanely, it also protects
the bogus callsites of create_irq_nr() in hpet, uv, irq_remapping and
htirq code. They need to be cleaned up as well, but that's a separate
issue.
Reported-by: Jin Yao <yao.jin@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Cc: Mathias Nyman <mathias.nyman@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Krogerus Heikki <heikki.krogerus@intel.com>
Cc: Linus Walleij <linus.walleij@linaro.org>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1404241617360.28206@ionos.tec.linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The current implementation of irq_set_affinity() refuses rightfully to
route an interrupt to an offline cpu.
But there is a special case, where this is actually desired. Some of
the ARM SoCs have per cpu timers which require setting the affinity
during cpu startup where the cpu is not yet in the online mask.
If we can't do that, then the local timer interrupt for the about to
become online cpu is routed to some random online cpu.
The developers of the affected machines tried to work around that
issue, but that results in a massive mess in that timer code.
We have a yet unused argument in the set_affinity callbacks of the irq
chips, which I added back then for a similar reason. It was never
required so it got not used. But I'm happy that I never removed it.
That allows us to implement a sane handling of the above scenario. So
the affected SoC drivers can add the required force handling to their
interrupt chip, switch the timer code to irq_force_affinity() and
things just work.
This does not affect any existing user of irq_set_affinity().
Tagged for stable to allow a simple fix of the affected SoC clock
event drivers.
Reported-and-tested-by: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Tomasz Figa <t.figa@samsung.com>,
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>,
Cc: Kukjin Kim <kgene.kim@samsung.com>
Cc: linux-arm-kernel@lists.infradead.org,
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20140416143315.717251504@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This will allow to use the dummy IRQ handler no_action() from drivers
compiled as module. Drivers which use ARM FIQ interrupts can use this
to request the interrupt via the normal request_irq() mechanism w/o
having to copy the dummy handler to their own code.
Signed-off-by: Alexander Shiyan <shc_work@mail.ru>
Link: http://lkml.kernel.org/r/1395476431-16070-1-git-send-email-shc_work@mail.ru
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Merge the request/release callbacks which are in a separate branch for
consumption by the gpio folks.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We hit one rare case below:
T1 calling disable_irq(), but hanging at synchronize_irq()
always;
The corresponding irq thread is in sleeping state;
And all CPUs are in idle state;
After analysis, we found there is one possible scenerio which
causes T1 is waiting there forever:
CPU0 CPU1
synchronize_irq()
wait_event()
spin_lock()
atomic_dec_and_test(&threads_active)
insert the __wait into queue
spin_unlock()
if(waitqueue_active)
atomic_read(&threads_active)
wake_up()
Here after inserted the __wait into queue on CPU0, and before
test if queue is empty on CPU1, there is no barrier, it maybe
cause it is not visible for CPU1 immediately, although CPU0 has
updated the queue list.
It is similar for CPU0 atomic_read() threads_active also.
So we'd need one smp_mb() before waitqueue_active.that, but removing
the waitqueue_active() check solves it as wel l and it makes
things simple and clear.
Signed-off-by: Chuansheng Liu <chuansheng.liu@intel.com>
Cc: Xiaoming Wang <xiaoming.wang@intel.com>
Link: http://lkml.kernel.org/r/1393212590-32543-1-git-send-email-chuansheng.liu@intel.com
Cc: stable@vger.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In course of the sdhci/sdio discussion with Russell about killing the
sdio kthread hackery we discovered the need to be able to wake an
interrupt thread from software.
The rationale for this is, that sdio hardware can lack proper
interrupt support for certain features. So the driver needs to poll
the status registers, but at the same time it needs to be woken up by
an hardware interrupt.
To be able to get rid of the home brewn kthread construct of sdio we
need a way to wake an irq thread independent of an actual hardware
interrupt.
Provide an irq_wake_thread() function which wakes up the thread which
is associated to a given dev_id. This allows sdio to invoke the irq
thread from the hardware irq handler via the IRQ_WAKE_THREAD return
value and provides a possibility to wake it via a timer for the
polling scenarios. That allows to simplify the sdio logic
significantly.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Chris Ball <chris@printf.net>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140215003823.772565780@linutronix.de
synchronize_irq() waits for hard irq and threaded handlers to complete
before returning. For some special cases we only need to make sure
that the hard interrupt part of the irq line is not in progress when
we disabled the - possibly shared - interrupt at the device level.
A proper use case for this was provided by Russell. The sdhci driver
requires some irq triggered functions to be run in thread context. The
current implementation of the thread context is a sdio private kthread
construct, which has quite some shortcomings. These can be avoided
when the thread is directly associated to the device interrupt via the
generic threaded irq infrastructure.
Though there is a corner case related to run time power management
where one side disables the device interrupts at the device level and
needs to make sure, that an already running hard interrupt handler has
completed before proceeding further. Though that hard interrupt
handler might wake the associated thread, which in turn can request
the runtime PM to reenable the device. Using synchronize_irq() leads
to an immediate deadlock of the irq thread waiting for the PM lock and
the synchronize_irq() waiting for the irq thread to complete.
Due to the fact that it is sufficient for this case to ensure that no
hard irq handler is executing a new function which avoids the check
for the thread is required.
Add a function, which just monitors the hard irq parts and ignores the
threaded handlers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Russell King <linux@arm.linux.org.uk>
Cc: Chris Ball <chris@printf.net>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140215003823.653236081@linutronix.de
Pull irq update from Thomas Gleixner:
"Fix from the urgent branch: a trivial oneliner adding the missing
Kconfig dependency curing build failures which have been discovered by
several build robots.
The update in the irq-core branch provides a new function in the
irq/devres code, which is a prerequisite for driver developers to get
rid of boilerplate code all over the place.
Not a bugfix, but it has zero impact on the current kernel due to the
lack of users. It's simpler to provide the infrastructure to
interested parties via your tree than fulfilling the wishlist of
driver maintainers on which particular commit or tag this should be
based on"
* 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
genirq: Add missing irq_to_desc export for CONFIG_SPARSE_IRQ=n
* 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
genirq: Add devm_request_any_context_irq()
In allmodconfig builds for sparc and any other arch which does
not set CONFIG_SPARSE_IRQ, the following will be seen at modpost:
CC [M] lib/cpu-notifier-error-inject.o
CC [M] lib/pm-notifier-error-inject.o
ERROR: "irq_to_desc" [drivers/gpio/gpio-mcp23s08.ko] undefined!
make[2]: *** [__modpost] Error 1
This happens because commit 3911ff30f5 ("genirq: export
handle_edge_irq() and irq_to_desc()") added one export for it, but
there were actually two instances of it, in an if/else clause for
CONFIG_SPARSE_IRQ. Add the second one.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: stable@vger.kernel.org # 3.4+
Link: http://lkml.kernel.org/r/1392057610-11514-1-git-send-email-paul.gortmaker@windriver.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>