* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits)
rcu: Move propagation of ->completed from rcu_start_gp() to rcu_report_qs_rsp()
rcu: Remove rcu_needs_cpu_flush() to avoid false quiescent states
rcu: Wire up RCU_BOOST_PRIO for rcutree
rcu: Make rcu_torture_boost() exit loops at end of test
rcu: Make rcu_torture_fqs() exit loops at end of test
rcu: Permit rt_mutex_unlock() with irqs disabled
rcu: Avoid having just-onlined CPU resched itself when RCU is idle
rcu: Suppress NMI backtraces when stall ends before dump
rcu: Prohibit grace periods during early boot
rcu: Simplify unboosting checks
rcu: Prevent early boot set_need_resched() from __rcu_pending()
rcu: Dump local stack if cannot dump all CPUs' stacks
rcu: Move __rcu_read_unlock()'s barrier() within if-statement
rcu: Improve rcu_assign_pointer() and RCU_INIT_POINTER() documentation
rcu: Make rcu_assign_pointer() unconditionally insert a memory barrier
rcu: Make rcu_implicit_dynticks_qs() locals be correct size
rcu: Eliminate in_irq() checks in rcu_enter_nohz()
nohz: Remove nohz_cpu_mask
rcu: Document interpretation of RCU-lockdep splats
rcu: Allow rcutorture's stat_interval parameter to be changed at runtime
...
Long ago, using TREE_RCU with PREEMPT would result in "scheduling
while atomic" diagnostics if you blocked in an RCU read-side critical
section. However, PREEMPT now implies TREE_PREEMPT_RCU, which defeats
this diagnostic. This commit therefore adds a replacement diagnostic
based on PROVE_RCU.
Because rcu_lockdep_assert() and lockdep_rcu_dereference() are now being
used for things that have nothing to do with rcu_dereference(), rename
lockdep_rcu_dereference() to lockdep_rcu_suspicious() and add a third
argument that is a string indicating what is suspicious. This third
argument is passed in from a new third argument to rcu_lockdep_assert().
Update all calls to rcu_lockdep_assert() to add an informative third
argument.
Also, add a pair of rcu_lockdep_assert() calls from within
rcu_note_context_switch(), one complaining if a context switch occurs
in an RCU-bh read-side critical section and another complaining if a
context switch occurs in an RCU-sched read-side critical section.
These are present only if the PROVE_RCU kernel parameter is enabled.
Finally, fix some checkpatch whitespace complaints in lockdep.c.
Again, you must enable PROVE_RCU to see these new diagnostics. But you
are enabling PROVE_RCU to check out new RCU uses in any case, aren't you?
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
match_held_lock() was assuming it was being called on a lock class
that had already seen usage.
This condition was true for bug-free code using lockdep_assert_held(),
since you're in fact holding the lock when calling it. However the
assumption fails the moment you assume the assertion can fail, which
is the whole point of having the assertion in the first place.
Anyway, now that there's more lockdep_is_held() users, notably
__rcu_dereference_check(), its much easier to trigger this since we
test for a number of locks and we only need to hold any one of them to
be good.
Reported-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1312547787.28695.2.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On Sun, 2011-07-24 at 21:06 -0400, Arnaud Lacombe wrote:
> /src/linux/linux/kernel/lockdep.c: In function 'mark_held_locks':
> /src/linux/linux/kernel/lockdep.c:2471:31: warning: comparison of
> distinct pointer types lacks a cast
The warning is harmless in this case, but the below makes it go away.
Reported-by: Arnaud Lacombe <lacombar@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1311588599.2617.56.camel@laptop
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The main lock_is_held() user is lockdep_assert_held(), avoid false
assertions in lockdep_off() sections by unconditionally reporting the
lock is taken.
[ the reason this is important is a lockdep_assert_held() in ttwu()
which triggers a warning under lockdep_off() as in printk() which
can trigger another wakeup and lock up due to spinlock
recursion, as reported and heroically debugged by Arne Jansen ]
Reported-and-tested-by: Arne Jansen <lists@die-jansens.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: <stable@kernel.org>
Link: http://lkml.kernel.org/r/1307398759.2497.966.camel@laptop
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Lockdep output can be pretty cryptic, having nicer output
can save a lot of head scratching. When a simple irq inversion
scenario is detected by lockdep (lock A taken in interrupt
context but also in thread context without disabling interrupts)
we now get the following (hopefully more informative) output:
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(lockA);
<Interrupt>
lock(lockA);
*** DEADLOCK ***
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20110421014300.436140880@goodmis.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Irq inversion and irq dependency bugs are only subtly
different. The diffenerence lies where the interrupt occurred.
For irq dependency:
irq_disable
lock(A)
lock(B)
unlock(B)
unlock(A)
irq_enable
lock(B)
unlock(B)
<interrupt>
lock(A)
The interrupt comes in after it has been established that lock A
can be held when taking an irq unsafe lock. Lockdep detects the
problem when taking lock A in interrupt context.
With the irq_inversion the irq happens before it is established
and lockdep detects the problem with the taking of lock B:
<interrupt>
lock(A)
irq_disable
lock(A)
lock(B)
unlock(B)
unlock(A)
irq_enable
lock(B)
unlock(B)
Since the problem with the locking logic for both of these issues
is in actuality the same, they both should report the same scenario.
This patch implements that and prints this:
other info that might help us debug this:
Chain exists of:
&rq->lock --> lockA --> lockC
Possible interrupt unsafe locking scenario:
CPU0 CPU1
---- ----
lock(lockC);
local_irq_disable();
lock(&rq->lock);
lock(lockA);
<Interrupt>
lock(&rq->lock);
*** DEADLOCK ***
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20110421014259.910720381@goodmis.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The lockdep output can be pretty cryptic, having nicer output
can save a lot of head scratching. When a normal deadlock
scenario is detected by lockdep (lock A -> lock B and there
exists a place where lock B -> lock A) we now get the following
new output:
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(lockB);
lock(lockA);
lock(lockB);
lock(lockA);
*** DEADLOCK ***
On cases where there's a deeper chair, it shows the partial
chain that can cause the issue:
Chain exists of:
lockC --> lockA --> lockB
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(lockB);
lock(lockA);
lock(lockB);
lock(lockC);
*** DEADLOCK ***
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20110421014259.380621789@goodmis.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Locking order inversion due to interrupts is a subtle problem.
When an irq lockiinversion discovered by lockdep it currently
reports something like:
[ INFO: HARDIRQ-safe -> HARDIRQ-unsafe lock order detected ]
... and then prints out the locks that are involved, as back traces.
Judging by lkml feedback developers were routinely confused by what
a HARDIRQ->safe to unsafe issue is all about, and sometimes even
blew it off as a bug in lockdep.
It is not obvious when lockdep prints this message about a lock that
is never taken in interrupt context.
After explaining the problems that lockdep is reporting, I
decided to add a description of the problem in visual form. Now
the following is shown:
---
other info that might help us debug this:
Possible interrupt unsafe locking scenario:
CPU0 CPU1
---- ----
lock(lockA);
local_irq_disable();
lock(&rq->lock);
lock(lockA);
<Interrupt>
lock(&rq->lock);
*** DEADLOCK ***
---
The above is the case when the unsafe lock is taken while
holding a lock taken in irq context. But when a lock is taken
that also grabs a unsafe lock, the call chain is shown:
---
other info that might help us debug this:
Chain exists of:
&rq->lock --> lockA --> lockC
Possible interrupt unsafe locking scenario:
CPU0 CPU1
---- ----
lock(lockC);
local_irq_disable();
lock(&rq->lock);
lock(lockA);
<Interrupt>
lock(&rq->lock);
*** DEADLOCK ***
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20110421014259.132728798@goodmis.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
During early boot, local IRQ is disabled until IRQ subsystem is
properly initialized. During this time, no one should enable
local IRQ and some operations which usually are not allowed with
IRQ disabled, e.g. operations which might sleep or require
communications with other processors, are allowed.
lockdep tracked this with early_boot_irqs_off/on() callbacks.
As other subsystems need this information too, move it to
init/main.c and make it generally available. While at it,
toggle the boolean to early_boot_irqs_disabled instead of
enabled so that it can be initialized with %false and %true
indicates the exceptional condition.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
LKML-Reference: <20110120110635.GB6036@htj.dyndns.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Current look_up_lock_class() doesn't check the parameter "subclass".
This rarely rises problems because the main caller of this function,
register_lock_class(), checks it.
But register_lock_class() is not the only function which calls
look_up_lock_class(). lock_set_class() and its callees also call it.
And lock_set_class() doesn't check this parameter.
This will rise problems when the the value of subclass is larger than
MAX_LOCKDEP_SUBCLASSES. Because the address (used as the key of class)
caliculated with too large subclass has a probability to point
another key in different lock_class_key.
Of course this problem depends on the memory layout and
occurs with really low probability.
Signed-off-by: Hitoshi Mitake <mitake@dcl.info.waseda.ac.jp>
Cc: Dmitry Torokhov <dtor@mail.ru>
Cc: Vojtech Pavlik <vojtech@ucw.cz>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1286958626-986-1-git-send-email-mitake@dcl.info.waseda.ac.jp>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Current lockdep_map only caches one class with subclass == 0,
and looks up hash table of classes when subclass != 0.
It seems that this has no problem because the case of
subclass != 0 is rare. But locks of struct rq are
acquired with subclass == 1 when task migration is executed.
Task migration is high frequent event, so I modified lockdep
to cache subclasses.
I measured the score of perf bench sched messaging.
This patch has slightly but certain (order of milli seconds
or 10 milli seconds) effect when lots of tasks are running.
I'll show the result in the tail of this description.
NR_LOCKDEP_CACHING_CLASSES specifies how many classes can be
cached in the instances of lockdep_map.
I discussed with Peter Zijlstra in LinuxCon Japan about
this approach and he taught me that caching every subclasses(8)
is cleary waste of memory. So number of cached classes
should be configurable.
=== Score comparison of benchmarks ===
# "min" means best score, and "max" means worst score
for i in `seq 1 10`; do ./perf bench -f simple sched messaging; done
before: min: 0.565000, max: 0.583000, avg: 0.572500
after: min: 0.559000, max: 0.568000, avg: 0.563300
# with more processes
for i in `seq 1 10`; do ./perf bench -f simple sched messaging -g 40; done
before: min: 2.274000, max: 2.298000, avg: 2.286300
after: min: 2.242000, max: 2.270000, avg: 2.259700
Signed-off-by: Hitoshi Mitake <mitake@dcl.info.waseda.ac.jp>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1286269311-28336-2-git-send-email-mitake@dcl.info.waseda.ac.jp>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
For people who otherwise get to write: cpu_clock(smp_processor_id()),
there is now: local_clock().
Also, as per suggestion from Andrew, provide some documentation on
the various clock interfaces, and minimize the unsigned long long vs
u64 mess.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jens Axboe <jaxboe@fusionio.com>
LKML-Reference: <1275052414.1645.52.camel@laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The conversion of device->sem to device->mutex resulted in lockdep
warnings. Create a novalidate class for now until the driver folks
come up with separate classes. That way we have at least the basic
mutex debugging coverage.
Add a checkpatch error so the usage is reserved for device->mutex.
[ tglx: checkpatch and compile fix for LOCKDEP=n ]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>