journal_remove_journal_head() can oops when trying to access journal_head
returned by bh2jh(). This is caused for example by the following race:
TASK1 TASK2
journal_commit_transaction()
...
processing t_forget list
__journal_refile_buffer(jh);
if (!jh->b_transaction) {
jbd_unlock_bh_state(bh);
journal_try_to_free_buffers()
journal_grab_journal_head(bh)
jbd_lock_bh_state(bh)
__journal_try_to_free_buffer()
journal_put_journal_head(jh)
journal_remove_journal_head(bh);
journal_put_journal_head() in TASK2 sees that b_jcount == 0 and buffer is not
part of any transaction and thus frees journal_head before TASK1 gets to doing
so. Note that even buffer_head can be released by try_to_free_buffers() after
journal_put_journal_head() which adds even larger opportunity for oops (but I
didn't see this happen in reality).
Fix the problem by making transactions hold their own journal_head reference
(in b_jcount). That way we don't have to remove journal_head explicitely via
journal_remove_journal_head() and instead just remove journal_head when
b_jcount drops to zero. The result of this is that [__]journal_refile_buffer(),
[__]journal_unfile_buffer(), and __journal_remove_checkpoint() can free
journal_head which needs modification of a few callers. Also we have to be
careful because once journal_head is removed, buffer_head might be freed as
well. So we have to get our own buffer_head reference where it matters.
Signed-off-by: Jan Kara <jack@suse.cz>
This commit adds fixed tracepoint for jbd. It has been based on fixed
tracepoints for jbd2, however there are missing those for collecting
statistics, since I think that it will require more intrusive patch so I
should have its own commit, if someone decide that it is needed. Also
there are new tracepoints in __journal_drop_transaction() and
journal_update_superblock().
The list of jbd tracepoints:
jbd_checkpoint
jbd_start_commit
jbd_commit_locking
jbd_commit_flushing
jbd_commit_logging
jbd_drop_transaction
jbd_end_commit
jbd_do_submit_data
jbd_cleanup_journal_tail
jbd_update_superblock_end
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Jan Kara <jack@suse.cz>
summarise_journal_usage seems to be obsolete for a long time,
so remove it.
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Tao Ma <boyu.mt@taobao.com>
Signed-off-by: Jan Kara <jack@suse.cz>
In do_get_write_access() we wait on BH_Unshadow bit for buffer to get
from shadow state. The waking code in journal_commit_transaction() has
a bug because it does not issue a memory barrier after the buffer is moved
from the shadow state and before wake_up_bit() is called. Thus a waitqueue
check can happen before the buffer is actually moved from the shadow state
and waiting process may never be woken. Fix the problem by issuing proper
barrier.
CC: stable@kernel.org
Reported-by: Tao Ma <boyu.mt@taobao.com>
Signed-off-by: Jan Kara <jack@suse.cz>
'write_op' was still used, even though it was always WRITE_SYNC now.
Add plugging around the cases where it submits IO, and flush them
before we end up waiting for that IO.
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
With the plugging now being explicitly controlled by the
submitter, callers need not pass down unplugging hints
to the block layer. If they want to unplug, it's because they
manually plugged on their own - in which case, they should just
unplug at will.
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs-2.6: (24 commits)
quota: Fix possible oops in __dquot_initialize()
ext3: Update kernel-doc comments
jbd/2: fixed typos
ext2: fixed typo.
ext3: Fix debug messages in ext3_group_extend()
jbd: Convert atomic_inc() to get_bh()
ext3: Remove misplaced BUFFER_TRACE() in ext3_truncate()
jbd: Fix debug message in do_get_write_access()
jbd: Check return value of __getblk()
ext3: Use DIV_ROUND_UP() on group desc block counting
ext3: Return proper error code on ext3_fill_super()
ext3: Remove unnecessary casts on bh->b_data
ext3: Cleanup ext3_setup_super()
quota: Fix issuing of warnings from dquot_transfer
quota: fix dquot_disable vs dquot_transfer race v2
jbd: Convert bitops to buffer fns
ext3/jbd: Avoid WARN() messages when failing to write the superblock
jbd: Use offset_in_page() instead of manual calculation
jbd: Remove unnecessary goto statement
jbd: Use printk_ratelimited() in journal_alloc_journal_head()
...
Convert atomic_inc(&bh->b_count) to get_bh(bh) for consistency.
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Convert set/clear_bit(BH_JWrite, ...) to set/clear_buffer_jwrite()
for consistency.
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
* 'for-2.6.37/barrier' of git://git.kernel.dk/linux-2.6-block: (46 commits)
xen-blkfront: disable barrier/flush write support
Added blk-lib.c and blk-barrier.c was renamed to blk-flush.c
block: remove BLKDEV_IFL_WAIT
aic7xxx_old: removed unused 'req' variable
block: remove the BH_Eopnotsupp flag
block: remove the BLKDEV_IFL_BARRIER flag
block: remove the WRITE_BARRIER flag
swap: do not send discards as barriers
fat: do not send discards as barriers
ext4: do not send discards as barriers
jbd2: replace barriers with explicit flush / FUA usage
jbd2: Modify ASYNC_COMMIT code to not rely on queue draining on barrier
jbd: replace barriers with explicit flush / FUA usage
nilfs2: replace barriers with explicit flush / FUA usage
reiserfs: replace barriers with explicit flush / FUA usage
gfs2: replace barriers with explicit flush / FUA usage
btrfs: replace barriers with explicit flush / FUA usage
xfs: replace barriers with explicit flush / FUA usage
block: pass gfp_mask and flags to sb_issue_discard
dm: convey that all flushes are processed as empty
...
Fsync performance for small files achieved by cfq on high-end disks is
lower than what deadline can achieve, due to idling introduced between
the sync write happening in process context and the journal commit.
Moreover, when competing with a sequential reader, a process writing
small files and fsync-ing them is starved.
This patch fixes the two problems by:
- marking journal commits as WRITE_SYNC, so that they get the REQ_NOIDLE
flag set,
- force all queues that have REQ_NOIDLE requests to be put in the noidle
tree.
Having the queue associated to the fsync-ing process and the one associated
to journal commits in the noidle tree allows:
- switching between them without idling,
- fairness vs. competing idling queues, since they will be serviced only
after the noidle tree expires its slice.
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Tested-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Corrado Zoccolo <czoccolo@gmail.com>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Switch to the WRITE_FLUSH_FUA flag for journal commits and remove the
EOPNOTSUPP detection for barriers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Instead of abusing a buffer_head flag just add a variant of
sync_dirty_buffer which allows passing the exact type of write
flag required.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Provide a function which returns whether a transaction with given tid
will send a barrier to the filesystem device. The function will be used
by ext3 to detect whether fsync needs to send a separate barrier or not.
Signed-off-by: Jan Kara <jack@suse.cz>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Delay discarding buffers in journal_unmap_buffer until
we know that "add to orphan" operation has definitely been
committed, otherwise the log space of committing transation
may be freed and reused before truncate get committed, updates
may get lost if crash happens.
This patch is a backport of JBD2 fix by dingdinghua <dingdinghua@nrchpc.ac.cn>.
Signed-off-by: Jan Kara <jack@suse.cz>
It does not make sense to store block number for journal as unsigned long
since they can be only 32-bit (because of on-disk format limitation). So
change in-memory structures and variables to use unsigned int instead.
Signed-off-by: Jan Kara <jack@suse.cz>
In commit code, we scan buffers attached to a transaction. During this
scan, we sometimes have to drop j_list_lock and then we recheck whether
the journal buffer head didn't get freed by journal_try_to_free_buffers().
But checking for buffer_jbd(bh) isn't enough because a new journal head
could get attached to our buffer head. So add a check whether the journal
head remained the same and whether it's still at the same transaction and
list.
This is a nasty bug and can cause problems like memory corruption (use after
free) or trigger various assertions in JBD code (observed).
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: <stable@kernel.org>
Cc: <linux-ext4@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The revoke records must be written using the same way as the rest of
the blocks during the commit process; that is, either marked as
synchronous writes or as asynchornous writes.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
When you are going to be submitting several sync writes, we want to
give the IO scheduler a chance to merge some of them. Instead of
using the implicitly unplugging WRITE_SYNC variant, use WRITE_SYNC_PLUG
and rely on sync_buffer() doing the unplug when someone does a
wait_on_buffer()/lock_buffer().
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a commit is triggered by fsync(), set a flag indicating the journal
blocks associated with the transaction should be flushed out using
WRITE_SYNC.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Acked-by: Jan Kara <jack@suse.cz>
There is a flaw with the way jbd handles fsync batching. If we fsync() a
file and we were not the last person to run fsync() on this fs then we
automatically sleep for 1 jiffie in order to wait for new writers to join
into the transaction before forcing the commit. The problem with this is
that with really fast storage (ie a Clariion) the time it takes to commit
a transaction to disk is way faster than 1 jiffie in most cases, so
sleeping means waiting longer with nothing to do than if we just committed
the transaction and kept going. Ric Wheeler noticed this when using
fs_mark with more than 1 thread, the throughput would plummet as he added
more threads.
This patch attempts to fix this problem by recording the average time in
nanoseconds that it takes to commit a transaction to disk, and what time
we started the transaction. If we run an fsync() and we have been running
for less time than it takes to commit the transaction to disk, we sleep
for the delta amount of time and then commit to disk. We acheive
sub-jiffie sleeping using schedule_hrtimeout. This means that the wait
time is auto-tuned to the speed of the underlying disk, instead of having
this static timeout. I weighted the average according to somebody's
comments (Andreas Dilger I think) in order to help normalize random
outliers where we take way longer or way less time to commit than the
average. I also have a min() check in there to make sure we don't sleep
longer than a jiffie in case our storage is super slow, this was requested
by Andrew.
I unfortunately do not have access to a Clariion, so I had to use a
ramdisk to represent a super fast array. I tested with a SATA drive with
barrier=1 to make sure there was no regression with local disks, I tested
with a 4 way multipathed Apple Xserve RAID array and of course the
ramdisk. I ran the following command
fs_mark -d /mnt/ext3-test -s 4096 -n 2000 -D 64 -t $i
where $i was 2, 4, 8, 16 and 32. I mkfs'ed the fs each time. Here are my
results
type threads with patch without patch
sata 2 24.6 26.3
sata 4 49.2 48.1
sata 8 70.1 67.0
sata 16 104.0 94.1
sata 32 153.6 142.7
xserve 2 246.4 222.0
xserve 4 480.0 440.8
xserve 8 829.5 730.8
xserve 16 1172.7 1026.9
xserve 32 1816.3 1650.5
ramdisk 2 2538.3 1745.6
ramdisk 4 2942.3 661.9
ramdisk 8 2882.5 999.8
ramdisk 16 2738.7 1801.9
ramdisk 32 2541.9 2394.0
Signed-off-by: Josef Bacik <jbacik@redhat.com>
Cc: Andreas Dilger <adilger@sun.com>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Ric Wheeler <rwheeler@redhat.com>
Cc: <linux-ext4@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the journal doesn't abort when it gets an IO error in file data blocks,
the file data corruption will spread silently. Because most of
applications and commands do buffered writes without fsync(), they don't
notice the IO error. It's scary for mission critical systems. On the
other hand, if the journal aborts whenever it gets an IO error in file
data blocks, the system will easily become inoperable. So this patch
introduces a filesystem option to determine whether it aborts the journal
or just call printk() when it gets an IO error in file data.
If you mount a ext3 fs with data_err=abort option, it aborts on file data
write error. If you mount it with data_err=ignore, it doesn't abort, just
call printk(). data_err=ignore is the default.
Signed-off-by: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com>
Cc: Jan Kara <jack@ucw.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, original metadata buffers are dirtied when they are unfiled
whether the journal has aborted or not. Eventually these buffers will be
written-back to the filesystem by pdflush. This means some metadata
buffers are written to the filesystem without journaling if the journal
aborts. So if both journal abort and system crash happen at the same
time, the filesystem would become inconsistent state. Additionally,
replaying journaled metadata can overwrite the latest metadata on the
filesystem partly. Because, if the journal aborts, journaled metadata are
preserved and replayed during the next mount not to lose uncheckpointed
metadata. This would also break the consistency of the filesystem.
This patch prevents original metadata buffers from being dirtied on abort
by clearing BH_JBDDirty flag from those buffers. Thus, no metadata
buffers are written to the filesystem without journaling.
Signed-off-by: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com>
Acked-by: Jan Kara <jack@suse.cz>
Cc: <linux-ext4@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>