The s-Par visornic driver, currently in staging, processes a queue being
serviced by the an s-Par service partition. We can get a message that
something has happened with the Service Partition, when that happens, we
must not access the channel until we get a message that the service
partition is back again.
The visornic driver has a thread for processing the channel, when we get
the message, we need to be able to park the thread and then resume it
when the problem clears.
We can do this with kthread_park and unpark but they are not exported
from the kernel, this patch exports the needed functions.
Signed-off-by: David Kershner <david.kershner@unisys.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Richard Weinberger <richard.weinberger@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This function may copy the si_addr_lsb, si_lower and si_upper fields to
user mode when they haven't been initialized, which can leak kernel
stack data to user mode.
Just checking the value of si_code is insufficient because the same
si_code value is shared between multiple signals. This is solved by
checking the value of si_signo in addition to si_code.
Signed-off-by: Amanieu d'Antras <amanieu@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This function can leak kernel stack data when the user siginfo_t has a
positive si_code value. The top 16 bits of si_code descibe which fields
in the siginfo_t union are active, but they are treated inconsistently
between copy_siginfo_from_user32, copy_siginfo_to_user32 and
copy_siginfo_to_user.
copy_siginfo_from_user32 is called from rt_sigqueueinfo and
rt_tgsigqueueinfo in which the user has full control overthe top 16 bits
of si_code.
This fixes the following information leaks:
x86: 8 bytes leaked when sending a signal from a 32-bit process to
itself. This leak grows to 16 bytes if the process uses x32.
(si_code = __SI_CHLD)
x86: 100 bytes leaked when sending a signal from a 32-bit process to
a 64-bit process. (si_code = -1)
sparc: 4 bytes leaked when sending a signal from a 32-bit process to a
64-bit process. (si_code = any)
parsic and s390 have similar bugs, but they are not vulnerable because
rt_[tg]sigqueueinfo have checks that prevent sending a positive si_code
to a different process. These bugs are also fixed for consistency.
Signed-off-by: Amanieu d'Antras <amanieu@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We don't actually hold the module_mutex when calling find_module_all
from module_kallsyms_lookup_name: that's because it's used by the oops
code and we don't want to deadlock.
However, access to the list read-only is safe if preempt is disabled,
so we can weaken the assertion. Keep a strong version for external
callers though.
Fixes: 0be964be0d ("module: Sanitize RCU usage and locking")
Reported-by: He Kuang <hekuang@huawei.com>
Cc: stable@kernel.org
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Pull x86 fixes from Thomas Gleixner:
"This update contains:
- the manual revert of the SYSCALL32 changes which caused a
regression
- a fix for the MPX vma handling
- three fixes for the ioremap 'is ram' checks.
- PAT warning fixes
- a trivial fix for the size calculation of TLB tracepoints
- handle old EFI structures gracefully
This also contains a PAT fix from Jan plus a revert thereof. Toshi
explained why the code is correct"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm/pat: Revert 'Adjust default caching mode translation tables'
x86/asm/entry/32: Revert 'Do not use R9 in SYSCALL32' commit
x86/mm: Fix newly introduced printk format warnings
mm: Fix bugs in region_is_ram()
x86/mm: Remove region_is_ram() call from ioremap
x86/mm: Move warning from __ioremap_check_ram() to the call site
x86/mm/pat, drivers/media/ivtv: Move the PAT warning and replace WARN() with pr_warn()
x86/mm/pat, drivers/infiniband/ipath: Replace WARN() with pr_warn()
x86/mm/pat: Adjust default caching mode translation tables
x86/fpu: Disable dependent CPU features on "noxsave"
x86/mpx: Do not set ->vm_ops on MPX VMAs
x86/mm: Add parenthesis for TLB tracepoint size calculation
efi: Handle memory error structures produced based on old versions of standard
Pull ftrace fix from Steven Rostedt:
"Back in 3.16 the ftrace code was redesigned and cleaned up to remove
the double iteration list (one for registered ftrace ops, and one for
registered "global" ops), to just use one list. That simplified the
code but also broke the function tracing filtering on pid.
This updates the code to handle the filtering again with the new
logic"
* tag 'trace-v4.2-rc2-fix3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
ftrace: Fix breakage of set_ftrace_pid
Commit 4104d326b6 ("ftrace: Remove global function list and call function
directly") simplified the ftrace code by removing the global_ops list with a
new design. But this cleanup also broke the filtering of PIDs that are added
to the set_ftrace_pid file.
Add back the proper hooks to have pid filtering working once again.
Cc: stable@vger.kernel.org # 3.16+
Reported-by: Matt Fleming <matt@console-pimps.org>
Reported-by: Richard Weinberger <richard.weinberger@gmail.com>
Tested-by: Matt Fleming <matt@console-pimps.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Pull x86 fixes from Ingo Molnar:
"Two families of fixes:
- Fix an FPU context related boot crash on newer x86 hardware with
larger context sizes than what most people test. To fix this
without ugly kludges or extensive reverts we had to touch core task
allocator, to allow x86 to determine the task size dynamically, at
boot time.
I've tested it on a number of x86 platforms, and I cross-built it
to a handful of architectures:
(warns) (warns)
testing x86-64: -git: pass ( 0), -tip: pass ( 0)
testing x86-32: -git: pass ( 0), -tip: pass ( 0)
testing arm: -git: pass ( 1359), -tip: pass ( 1359)
testing cris: -git: pass ( 1031), -tip: pass ( 1031)
testing m32r: -git: pass ( 1135), -tip: pass ( 1135)
testing m68k: -git: pass ( 1471), -tip: pass ( 1471)
testing mips: -git: pass ( 1162), -tip: pass ( 1162)
testing mn10300: -git: pass ( 1058), -tip: pass ( 1058)
testing parisc: -git: pass ( 1846), -tip: pass ( 1846)
testing sparc: -git: pass ( 1185), -tip: pass ( 1185)
... so I hope the cross-arch impact 'none', as intended.
(by Dave Hansen)
- Fix various NMI handling related bugs unearthed by the big asm code
rewrite and generally make the NMI code more robust and more
maintainable while at it. These changes are a bit late in the
cycle, I hope they are still acceptable.
(by Andy Lutomirski)"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu, sched: Introduce CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT and use it on x86
x86/fpu, sched: Dynamically allocate 'struct fpu'
x86/entry/64, x86/nmi/64: Add CONFIG_DEBUG_ENTRY NMI testing code
x86/nmi/64: Make the "NMI executing" variable more consistent
x86/nmi/64: Minor asm simplification
x86/nmi/64: Use DF to avoid userspace RSP confusing nested NMI detection
x86/nmi/64: Reorder nested NMI checks
x86/nmi/64: Improve nested NMI comments
x86/nmi/64: Switch stacks on userspace NMI entry
x86/nmi/64: Remove asm code that saves CR2
x86/nmi: Enable nested do_nmi() handling for 64-bit kernels
Pull timer fix from Ingo Molnar:
"Fix for a misplaced export that can cause build failures in certain
(rare) Kconfig situations"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
tick: Move the export of tick_broadcast_oneshot_control to the proper place
Pull scheduler fix from Ingo Molnar:
"A oneliner rq throttling fix"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/fair: Test list head instead of list entry in throttle_cfs_rq()
Pull irq fixes from Ingo Molnar:
"Misc irq fixes:
- two driver fixes
- a Xen regression fix
- a nested irq thread crash fix"
* 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
irqchip/gicv3-its: Fix mapping of LPIs to collections
genirq: Prevent resend to interrupts marked IRQ_NESTED_THREAD
genirq: Revert sparse irq locking around __cpu_up() and move it to x86 for now
gpio/davinci: Fix race in installing chained irq handler
The resend mechanism happily calls the interrupt handler of interrupts
which are marked IRQ_NESTED_THREAD from softirq context. This can
result in crashes because the interrupt handler is not the proper way
to invoke the device handlers. They must be invoked via
handle_nested_irq.
Prevent the resend even if the interrupt has no valid parent irq
set. Its better to have a lost interrupt than a crashing machine.
Reported-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Pull tracing fix from Steven Rostedt:
"Fengguang Wu discovered a crash that happened to be because of the
branch tracer (traces unlikely and likely branches) when enabled with
certain debug options.
What happened was that various debug options like lockdep and
DEBUG_PREEMPT can cause parts of the branch tracer to recurse outside
its recursion protection. In fact, part of its recursion protection
used these features that caused the lockup. This cleans up the code a
little and makes the recursion protection a bit more robust"
* tag 'trace-v4.2-rc1-fix' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
tracing: Have branch tracer use recursive field of task struct
Boris reported that the sparse_irq protection around __cpu_up() in the
generic code causes a regression on Xen. Xen allocates interrupts and
some more in the xen_cpu_up() function, so it deadlocks on the
sparse_irq_lock.
There is no simple fix for this and we really should have the
protection for all architectures, but for now the only solution is to
move it to x86 where actual wreckage due to the lack of protection has
been observed.
Reported-and-tested-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Fixes: a899418167 'hotplug: Prevent alloc/free of irq descriptors during cpu up/down'
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: xiao jin <jin.xiao@intel.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Yanmin Zhang <yanmin_zhang@linux.intel.com>
Cc: xen-devel <xen-devel@lists.xenproject.org>
tick_broadcast_oneshot_control got moved from tick-broadcast to
tick-common, but the export stayed in the old place. Fix it up.
Fixes: f32dd11705 'tick/broadcast: Make idle check independent from mode and config'
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull timer fixes from Thomas Gleixner:
"This update from the timer departement contains:
- A series of patches which address a shortcoming in the tick
broadcast code.
If the broadcast device is not available or an hrtimer emulated
broadcast device, some of the original assumptions lead to boot
failures. I rather plugged all of the corner cases instead of only
addressing the issue reported, so the change got a little larger.
Has been extensivly tested on x86 and arm.
- Get rid of the last holdouts using do_posix_clock_monotonic_gettime()
- A regression fix for the imx clocksource driver
- An update to the new state callbacks mechanism for clockevents.
This is required to simplify the conversion, which will take place
in 4.3"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
tick/broadcast: Prevent NULL pointer dereference
time: Get rid of do_posix_clock_monotonic_gettime
cris: Replace do_posix_clock_monotonic_gettime()
tick/broadcast: Unbreak CONFIG_GENERIC_CLOCKEVENTS=n build
tick/broadcast: Handle spurious interrupts gracefully
tick/broadcast: Check for hrtimer broadcast active early
tick/broadcast: Return busy when IPI is pending
tick/broadcast: Return busy if periodic mode and hrtimer broadcast
tick/broadcast: Move the check for periodic mode inside state handling
tick/broadcast: Prevent deep idle if no broadcast device available
tick/broadcast: Make idle check independent from mode and config
tick/broadcast: Sanity check the shutdown of the local clock_event
tick/broadcast: Prevent hrtimer recursion
clockevents: Allow set-state callbacks to be optional
clocksource/imx: Define clocksource for mx27
Pull irq fix from Thomas Gleixner:
"A single fix for a cpu hotplug race vs. interrupt descriptors:
Prevent irq setup/teardown across the cpu starting/dying parts of cpu
hotplug so that the starting/dying cpu has a stable view of the
descriptor space. This has been an issue for all architectures in the
cpu dying phase, where interrupts are migrated away from the dying
cpu. In the starting phase its mostly a x86 issue vs the vector space
update"
* 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
hotplug: Prevent alloc/free of irq descriptors during cpu up/down
Dan reported that the recent changes to the broadcast code introduced
a potential NULL dereference.
Add the proper check.
Fixes: e045431190 "tick/broadcast: Sanity check the shutdown of the local clock_event"
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The "fix" in commit 0b08c5e594 ("audit: Fix check of return value of
strnlen_user()") didn't fix anything, it broke things. As reported by
Steven Rostedt:
"Yes, strnlen_user() returns 0 on fault, but if you look at what len is
set to, than you would notice that on fault len would be -1"
because we just subtracted one from the return value. So testing
against 0 doesn't test for a fault condition, it tests against a
perfectly valid empty string.
Also fix up the usual braindamage wrt using WARN_ON() inside a
conditional - make it part of the conditional and remove the explicit
unlikely() (which is already part of the WARN_ON*() logic, exactly so
that you don't have to write unreadable code.
Reported-and-tested-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Paul Moore <pmoore@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fengguang Wu's tests triggered a bug in the branch tracer's start up
test when CONFIG_DEBUG_PREEMPT set. This was because that config
adds some debug logic in the per cpu field, which calls back into
the branch tracer.
The branch tracer has its own recursive checks, but uses a per cpu
variable to implement it. If retrieving the per cpu variable calls
back into the branch tracer, you can see how things will break.
Instead of using a per cpu variable, use the trace_recursion field
of the current task struct. Simply set a bit when entering the
branch tracing and clear it when leaving. If the bit is set on
entry, just don't do the tracing.
There's also the case with lockdep, as the local_irq_save() called
before the recursion can also trigger code that can call back into
the function. Changing that to a raw_local_irq_save() will protect
that as well.
This prevents the recursion and the inevitable crash that follows.
Link: http://lkml.kernel.org/r/20150630141803.GA28071@wfg-t540p.sh.intel.com
Cc: stable@vger.kernel.org # 3.10+
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Tested-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
When a cpu goes up some architectures (e.g. x86) have to walk the irq
space to set up the vector space for the cpu. While this needs extra
protection at the architecture level we can avoid a few race
conditions by preventing the concurrent allocation/free of irq
descriptors and the associated data.
When a cpu goes down it moves the interrupts which are targeted to
this cpu away by reassigning the affinities. While this happens
interrupts can be allocated and freed, which opens a can of race
conditions in the code which reassignes the affinities because
interrupt descriptors might be freed underneath.
Example:
CPU1 CPU2
cpu_up/down
irq_desc = irq_to_desc(irq);
remove_from_radix_tree(desc);
raw_spin_lock(&desc->lock);
free(desc);
We could protect the irq descriptors with RCU, but that would require
a full tree change of all accesses to interrupt descriptors. But
fortunately these kind of race conditions are rather limited to a few
things like cpu hotplug. The normal setup/teardown is very well
serialized. So the simpler and obvious solution is:
Prevent allocation and freeing of interrupt descriptors accross cpu
hotplug.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: xiao jin <jin.xiao@intel.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Yanmin Zhang <yanmin_zhang@linux.intel.com>
Link: http://lkml.kernel.org/r/20150705171102.063519515@linutronix.de