tick_handle_periodic() can lock up hard when a one shot clock event
device is used in combination with jiffies clocksource.
Avoid an endless loop issue by requiring that a highres valid
clocksource be installed before we call tick_periodic() in a loop when
using ONESHOT mode. The result is we will only increment jiffies once
per interrupt until a continuous hardware clocksource is available.
Without this, we can run into a endless loop, where each cycle through
the loop, jiffies is updated which increments time by tick_period or
more (due to clock steering), which can cause the event programming to
think the next event was before the newly incremented time and fail
causing tick_periodic() to be called again and the whole process loops
forever.
[ Impact: prevent hard lock up ]
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@kernel.org
Add enable() and disable() callbacks for clocksources.
This allows us to put unused clocksources in power save mode. The
functions clocksource_enable() and clocksource_disable() wrap the
callbacks and are inserted in the timekeeping code to enable before use
and disable after switching to a new clocksource.
Signed-off-by: Magnus Damm <damm@igel.co.jp>
Acked-by: John Stultz <johnstul@us.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pass clocksource pointer to the read() callback for clocksources. This
allows us to share the callback between multiple instances.
[hugh@veritas.com: fix powerpc build of clocksource pass clocksource mods]
[akpm@linux-foundation.org: cleanup]
Signed-off-by: Magnus Damm <damm@igel.co.jp>
Acked-by: John Stultz <johnstul@us.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The time_status conditional was accidentally placed right after we clear
the checked time_status bits, which causes us to take the conditional
every time through. This fixes it by moving the conditional to before we
clear the time_status bits.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Clark Williams <williams@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup, no functionality changed
The 'time_adj' local variable is named in a very confusing
way because it almost shadows the 'time_adjust' global
variable - which is used in this same function.
Rename it to 'delta' - to make them stand apart more clearly.
kernel/time/ntp.o:
text data bss dec hex filename
2545 114 144 2803 af3 ntp.o.before
2545 114 144 2803 af3 ntp.o.after
md5:
1bf0b3be564512279ba7cee299d1d2be ntp.o.before.asm
1bf0b3be564512279ba7cee299d1d2be ntp.o.after.asm
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: micro-optimization
Convert the (internal) ntp_tick_adj value we store from unscaled
units to scaled units. This is a constant that we never modify,
so scaling it up once during bootup is enough - we dont have to
do it for every adjustment step.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup, no functionality changed
Further simplify do_adjtimex():
- introduce the ntp_start_leap_timer() helper function
- eliminate the goto adj_done complication
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup, no functionality changed
do_adjtimex() is currently a monster function with a maze of
branches. Refactor the txc->modes setting aspects of it into
two new helper functions:
process_adj_status()
process_adjtimex_modes()
kernel/time/ntp.o:
text data bss dec hex filename
2512 114 136 2762 aca ntp.o.before
2512 114 136 2762 aca ntp.o.after
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: change (fix) the way the NTP PLL seconds offset is initialized/tracked
Fix a bug and do a micro-optimization:
When PLL is enabled we do not reset time_reftime. If the PLL
was off for a long time (for example after bootup), this is
arguably the wrong thing to do.
We already had a hack for the common boot-time case in
ntp_update_offset(), in form of:
if (unlikely(time_status & STA_FREQHOLD || time_reftime == 0))
secs = 0;
But the update delta should be reset later on too - not just when
the PLL is enabled for the first time after bootup.
So do it on !STA_PLL -> STA_PLL transitions.
This changes behavior, as previously if ntpd was disabled for
a long time and we restarted it, we'd run from that last update,
with a very large delta.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup, no functionality changed
The time_reftime update in ntp_update_offset() to xtime.tv_sec
is a convoluted way of saying that we want to freeze the frequency
and want the 'secs' delta to be 0. Also make this branch unlikely.
This shaves off 8 bytes from the code size:
text data bss dec hex filename
2504 114 136 2754 ac2 ntp.o.before
2496 114 136 2746 aba ntp.o.after
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup, no functionality changed
Change ntp_update_offset_fll() to delta logic instead of
absolute value logic. This eliminates 'freq_adj' from the
function.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup, no functionality changed
Change ntp_update_frequency() from a hard to follow code
flow that uses global variables as temporaries, to a clean
input+output flow.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup, no functionality changed
There's an ugly u64 typecase in the MAX_TICKADJ_SCALED definition,
this can be eliminated by making the MAX_TICKADJ constant's type
64-bit (signed).
kernel/time/ntp.o:
text data bss dec hex filename
2504 114 136 2754 ac2 ntp.o.before
2504 114 136 2754 ac2 ntp.o.after
md5:
41f3009debc9b397d7394dd77d912f0a ntp.o.before.asm
41f3009debc9b397d7394dd77d912f0a ntp.o.after.asm
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup, no functionality changed
Instead of a hierarchy of conditions, transform them to clean
gradual conditions and return's.
This makes the flow easier to read and makes the purpose of
the function easier to understand.
kernel/time/ntp.o:
text data bss dec hex filename
2552 170 168 2890 b4a ntp.o.before
2552 170 168 2890 b4a ntp.o.after
md5:
eae1275df0b7d6290c13f6f6f8f05c8c ntp.o.before.asm
eae1275df0b7d6290c13f6f6f8f05c8c ntp.o.after.asm
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup, no functionality changed
Make this file a bit more readable by applying a consistent coding style.
No code changed:
kernel/time/ntp.o:
text data bss dec hex filename
2552 170 168 2890 b4a ntp.o.before
2552 170 168 2890 b4a ntp.o.after
md5:
eae1275df0b7d6290c13f6f6f8f05c8c ntp.o.before.asm
eae1275df0b7d6290c13f6f6f8f05c8c ntp.o.after.asm
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since the GENERIC_TIME changes landed, the adjtimex behavior changed
for struct timex.tick and .freq changed. When the tick or freq value
is set, we adjust the tick_length_base in ntp_update_frequency().
However, this new value doesn't get applied to tick_length until the
next second (via second_overflow).
This means some applications that do quick time tweaking do not see the
requested change made as quickly as expected.
I've run a few tests with this change, and ntpd still functions fine.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Mapping from a struct timecounter to a time returned by functions like
ktime_get_real() is implemented. This is sufficient to use this code
in a network device driver which wants to support hardware time
stamping and transformation of hardware time stamps to system time.
The interface could have been made more versatile by not depending on
a time counter, but this wasn't done to avoid writing glue code
elsewhere.
The method implemented here is the one used and analyzed under the name
"assisted PTP" in the LCI PTP paper:
http://www.linuxclustersinstitute.org/conferences/archive/2008/PDF/Ohly_92221.pdf
Acked-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Patrick Ohly <patrick.ohly@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
So far struct clocksource acted as the interface between time/timekeeping.c
and hardware. This patch generalizes the concept so that a similar
interface can also be used in other contexts. For that it introduces
new structures and related functions *without* touching the existing
struct clocksource.
The reasons for adding these new structures to clocksource.[ch] are
* the APIs are clearly related
* struct clocksource could be cleaned up to use the new structs
* avoids proliferation of files with similar names (timesource.h?
timecounter.h?)
As outlined in the discussion with John Stultz, this patch adds
* struct cyclecounter: stateless API to hardware which counts clock cycles
* struct timecounter: stateful utility code built on a cyclecounter which
provides a nanosecond counter
* only the function to read the nanosecond counter; deltas are used internally
and not exposed to users of timecounter
The code does no locking of the shared state. It must be called at least
as often as the cycle counter wraps around to detect these wrap arounds.
Both is the responsibility of the timecounter user.
Acked-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Patrick Ohly <patrick.ohly@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Impact: fix CPU hotplug hang on Power6 testbox
On architectures that support offlining all cpus (at least powerpc/pseries),
hot-unpluging the tick_do_timer_cpu can result in a system hang.
This comes from the fact that if the cpu going down happens to be the
cpu doing the tick, then as the tick_do_timer_cpu handover happens after the
cpu is dead (via the CPU_DEAD notification), we're left without ticks,
jiffies are frozen and any task relying on timers (msleep, ...) is stuck.
That's particularly the case for the cpu looping in __cpu_die() waiting
for the dying cpu to be dead.
This patch addresses this by having the tick_do_timer_cpu handover happen
earlier during the CPU_DYING notification. For this, a new clockevent
notification type is introduced (CLOCK_EVT_NOTIFY_CPU_DYING) which is triggered
in hrtimer_cpu_notify().
Signed-off-by: Sebastien Dugue <sebastien.dugue@bull.net>
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>