Commit Graph

11992 Commits

Author SHA1 Message Date
Lai Jiangshan
bc713e264e workqueue: UNBOUND -> REBIND morphing in rebind_workers() should be atomic
commit 96e65306b8 upstream.

The compiler may compile the following code into TWO write/modify
instructions.

	worker->flags &= ~WORKER_UNBOUND;
	worker->flags |= WORKER_REBIND;

so the other CPU may temporarily see worker->flags which doesn't have
either WORKER_UNBOUND or WORKER_REBIND set and perform local wakeup
prematurely.

Fix it by using single explicit assignment via ACCESS_ONCE().

Because idle workers have another WORKER_NOT_RUNNING flag, this bug
doesn't exist for them; however, update it to use the same pattern for
consistency.

tj: Applied the change to idle workers too and updated comments and
    patch description a bit.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-10-02 09:47:40 -07:00
Al Viro
71f08eb071 perf_event: Switch to internal refcount, fix race with close()
commit a6fa941d94 upstream.

Don't mess with file refcounts (or keep a reference to file, for
that matter) in perf_event.  Use explicit refcount of its own
instead.  Deal with the race between the final reference to event
going away and new children getting created for it by use of
atomic_long_inc_not_zero() in inherit_event(); just have the
latter free what it had allocated and return NULL, that works
out just fine (children of siblings of something doomed are
created as singletons, same as if the child of leader had been
created and immediately killed).

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120820135925.GG23464@ZenIV.linux.org.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-10-02 09:47:24 -07:00
Tejun Heo
3d45db6b51 workqueue: reimplement work_on_cpu() using system_wq
commit ed48ece27c upstream.

The existing work_on_cpu() implementation is hugely inefficient.  It
creates a new kthread, execute that single function and then let the
kthread die on each invocation.

Now that system_wq can handle concurrent executions, there's no
advantage of doing this.  Reimplement work_on_cpu() using system_wq
which makes it simpler and way more efficient.

stable: While this isn't a fix in itself, it's needed to fix a
        workqueue related bug in cpufreq/powernow-k8.  AFAICS, this
        shouldn't break other existing users.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-10-02 09:47:22 -07:00
Miklos Szeredi
830cd761e4 audit: fix refcounting in audit-tree
commit a2140fc0cb upstream.

Refcounting of fsnotify_mark in audit tree is broken.  E.g:

                              refcount
create_chunk
  alloc_chunk                 1
  fsnotify_add_mark           2

untag_chunk
  fsnotify_get_mark           3
  fsnotify_destroy_mark
    audit_tree_freeing_mark   2
  fsnotify_put_mark           1
  fsnotify_put_mark           0
  via destroy_list
    fsnotify_mark_destroy    -1

This was reported by various people as triggering Oops when stopping auditd.

We could just remove the put_mark from audit_tree_freeing_mark() but that would
break freeing via inode destruction.  So this patch simply omits a put_mark
after calling destroy_mark or adds a get_mark before.

The additional get_mark is necessary where there's no other put_mark after
fsnotify_destroy_mark() since it assumes that the caller is holding a reference
(or the inode is keeping the mark pinned, not the case here AFAICS).

Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Reported-by: Valentin Avram <aval13@gmail.com>
Reported-by: Peter Moody <pmoody@google.com>
Acked-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-09-14 10:00:38 -07:00
Miklos Szeredi
56e4562bb3 audit: don't free_chunk() after fsnotify_add_mark()
commit 0fe33aae0e upstream.

Don't do free_chunk() after fsnotify_add_mark().  That one does a delayed unref
via the destroy list and this results in use-after-free.

Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Acked-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-09-14 10:00:38 -07:00
Theodore Ts'o
b6b847a93b random: remove rand_initialize_irq()
commit c5857ccf29 upstream.

With the new interrupt sampling system, we are no longer using the
timer_rand_state structure in the irq descriptor, so we can stop
initializing it now.

[ Merged in fixes from Sedat to find some last missing references to
  rand_initialize_irq() ]

Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-08-15 12:04:28 -07:00
Theodore Ts'o
aa88dea227 random: make 'add_interrupt_randomness()' do something sane
commit 775f4b297b upstream.

We've been moving away from add_interrupt_randomness() for various
reasons: it's too expensive to do on every interrupt, and flooding the
CPU with interrupts could theoretically cause bogus floods of entropy
from a somewhat externally controllable source.

This solves both problems by limiting the actual randomness addition
to just once a second or after 64 interrupts, whicever comes first.
During that time, the interrupt cycle data is buffered up in a per-cpu
pool.  Also, we make sure the the nonblocking pool used by urandom is
initialized before we start feeding the normal input pool.  This
assures that /dev/urandom is returning unpredictable data as soon as
possible.

(Based on an original patch by Linus, but significantly modified by
tytso.)

Tested-by: Eric Wustrow <ewust@umich.edu>
Reported-by: Eric Wustrow <ewust@umich.edu>
Reported-by: Nadia Heninger <nadiah@cs.ucsd.edu>
Reported-by: Zakir Durumeric <zakir@umich.edu>
Reported-by: J. Alex Halderman <jhalderm@umich.edu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-08-15 12:04:12 -07:00
Darren Hart
b7a06be61b futex: Forbid uaddr == uaddr2 in futex_wait_requeue_pi()
commit 6f7b0a2a5c upstream.

If uaddr == uaddr2, then we have broken the rule of only requeueing
from a non-pi futex to a pi futex with this call. If we attempt this,
as the trinity test suite manages to do, we miss early wakeups as
q.key is equal to key2 (because they are the same uaddr). We will then
attempt to dereference the pi_mutex (which would exist had the futex_q
been properly requeued to a pi futex) and trigger a NULL pointer
dereference.

Signed-off-by: Darren Hart <dvhart@linux.intel.com>
Cc: Dave Jones <davej@redhat.com>
Link: http://lkml.kernel.org/r/ad82bfe7f7d130247fbe2b5b4275654807774227.1342809673.git.dvhart@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-08-09 08:27:54 -07:00
Darren Hart
7367fdb498 futex: Fix bug in WARN_ON for NULL q.pi_state
commit f27071cb7f upstream.

The WARN_ON in futex_wait_requeue_pi() for a NULL q.pi_state was testing
the address (&q.pi_state) of the pointer instead of the value
(q.pi_state) of the pointer. Correct it accordingly.

Signed-off-by: Darren Hart <dvhart@linux.intel.com>
Cc: Dave Jones <davej@redhat.com>
Link: http://lkml.kernel.org/r/1c85d97f6e5f79ec389a4ead3e367363c74bd09a.1342809673.git.dvhart@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-08-09 08:27:54 -07:00
Darren Hart
bc16cc3950 futex: Test for pi_mutex on fault in futex_wait_requeue_pi()
commit b6070a8d98 upstream.

If fixup_pi_state_owner() faults, pi_mutex may be NULL. Test
for pi_mutex != NULL before testing the owner against current
and possibly unlocking it.

Signed-off-by: Darren Hart <dvhart@linux.intel.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Link: http://lkml.kernel.org/r/dc59890338fc413606f04e5c5b131530734dae3d.1342809673.git.dvhart@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-08-09 08:27:54 -07:00
Tejun Heo
b1c7ba1bab workqueue: perform cpu down operations from low priority cpu_notifier()
commit 6575820221 upstream.

Currently, all workqueue cpu hotplug operations run off
CPU_PRI_WORKQUEUE which is higher than normal notifiers.  This is to
ensure that workqueue is up and running while bringing up a CPU before
other notifiers try to use workqueue on the CPU.

Per-cpu workqueues are supposed to remain working and bound to the CPU
for normal CPU_DOWN_PREPARE notifiers.  This holds mostly true even
with workqueue offlining running with higher priority because
workqueue CPU_DOWN_PREPARE only creates a bound trustee thread which
runs the per-cpu workqueue without concurrency management without
explicitly detaching the existing workers.

However, if the trustee needs to create new workers, it creates
unbound workers which may wander off to other CPUs while
CPU_DOWN_PREPARE notifiers are in progress.  Furthermore, if the CPU
down is cancelled, the per-CPU workqueue may end up with workers which
aren't bound to the CPU.

While reliably reproducible with a convoluted artificial test-case
involving scheduling and flushing CPU burning work items from CPU down
notifiers, this isn't very likely to happen in the wild, and, even
when it happens, the effects are likely to be hidden by the following
successful CPU down.

Fix it by using different priorities for up and down notifiers - high
priority for up operations and low priority for down operations.

Workqueue cpu hotplug operations will soon go through further cleanup.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-08-09 08:27:36 -07:00
Srivatsa S. Bhat
31b1c08507 ftrace: Disable function tracing during suspend/resume and hibernation, again
commit 443772d408 upstream.

If function tracing is enabled for some of the low-level suspend/resume
functions, it leads to triple fault during resume from suspend, ultimately
ending up in a reboot instead of a resume (or a total refusal to come out
of suspended state, on some machines).

This issue was explained in more detail in commit f42ac38c59 (ftrace:
disable tracing for suspend to ram). However, the changes made by that commit
got reverted by commit cbe2f5a6e8 (tracing: allow tracing of
suspend/resume & hibernation code again). So, unfortunately since things are
not yet robust enough to allow tracing of low-level suspend/resume functions,
suspend/resume is still broken when ftrace is enabled.

So fix this by disabling function tracing during suspend/resume & hibernation.

Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-08-09 08:27:35 -07:00
Mel Gorman
627c5c60b4 cpuset: mm: reduce large amounts of memory barrier related damage v3
commit cc9a6c8776 upstream.

Stable note:  Not tracked in Bugzilla. [get|put]_mems_allowed() is extremely
	expensive and severely impacted page allocator performance. This
	is part of a series of patches that reduce page allocator overhead.

Commit c0ff7453bb ("cpuset,mm: fix no node to alloc memory when
changing cpuset's mems") wins a super prize for the largest number of
memory barriers entered into fast paths for one commit.

[get|put]_mems_allowed is incredibly heavy with pairs of full memory
barriers inserted into a number of hot paths.  This was detected while
investigating at large page allocator slowdown introduced some time
after 2.6.32.  The largest portion of this overhead was shown by
oprofile to be at an mfence introduced by this commit into the page
allocator hot path.

For extra style points, the commit introduced the use of yield() in an
implementation of what looks like a spinning mutex.

This patch replaces the full memory barriers on both read and write
sides with a sequence counter with just read barriers on the fast path
side.  This is much cheaper on some architectures, including x86.  The
main bulk of the patch is the retry logic if the nodemask changes in a
manner that can cause a false failure.

While updating the nodemask, a check is made to see if a false failure
is a risk.  If it is, the sequence number gets bumped and parallel
allocators will briefly stall while the nodemask update takes place.

In a page fault test microbenchmark, oprofile samples from
__alloc_pages_nodemask went from 4.53% of all samples to 1.15%.  The
actual results were

                             3.3.0-rc3          3.3.0-rc3
                             rc3-vanilla        nobarrier-v2r1
    Clients   1 UserTime       0.07 (  0.00%)   0.08 (-14.19%)
    Clients   2 UserTime       0.07 (  0.00%)   0.07 (  2.72%)
    Clients   4 UserTime       0.08 (  0.00%)   0.07 (  3.29%)
    Clients   1 SysTime        0.70 (  0.00%)   0.65 (  6.65%)
    Clients   2 SysTime        0.85 (  0.00%)   0.82 (  3.65%)
    Clients   4 SysTime        1.41 (  0.00%)   1.41 (  0.32%)
    Clients   1 WallTime       0.77 (  0.00%)   0.74 (  4.19%)
    Clients   2 WallTime       0.47 (  0.00%)   0.45 (  3.73%)
    Clients   4 WallTime       0.38 (  0.00%)   0.37 (  1.58%)
    Clients   1 Flt/sec/cpu  497620.28 (  0.00%) 520294.53 (  4.56%)
    Clients   2 Flt/sec/cpu  414639.05 (  0.00%) 429882.01 (  3.68%)
    Clients   4 Flt/sec/cpu  257959.16 (  0.00%) 258761.48 (  0.31%)
    Clients   1 Flt/sec      495161.39 (  0.00%) 517292.87 (  4.47%)
    Clients   2 Flt/sec      820325.95 (  0.00%) 850289.77 (  3.65%)
    Clients   4 Flt/sec      1020068.93 (  0.00%) 1022674.06 (  0.26%)
    MMTests Statistics: duration
    Sys Time Running Test (seconds)             135.68    132.17
    User+Sys Time Running Test (seconds)         164.2    160.13
    Total Elapsed Time (seconds)                123.46    120.87

The overall improvement is small but the System CPU time is much
improved and roughly in correlation to what oprofile reported (these
performance figures are without profiling so skew is expected).  The
actual number of page faults is noticeably improved.

For benchmarks like kernel builds, the overall benefit is marginal but
the system CPU time is slightly reduced.

To test the actual bug the commit fixed I opened two terminals.  The
first ran within a cpuset and continually ran a small program that
faulted 100M of anonymous data.  In a second window, the nodemask of the
cpuset was continually randomised in a loop.

Without the commit, the program would fail every so often (usually
within 10 seconds) and obviously with the commit everything worked fine.
With this patch applied, it also worked fine so the fix should be
functionally equivalent.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-08-01 12:27:20 -07:00
David Rientjes
ba204b545c cpusets: stall when updating mems_allowed for mempolicy or disjoint nodemask
commit b246272ecc upstream.

Stable note: Not tracked in Bugzilla. [get|put]_mems_allowed() is extremely
	expensive and severely impacted page allocator performance. This is
	part of a series of patches that reduce page allocator overhead.

Kernels where MAX_NUMNODES > BITS_PER_LONG may temporarily see an empty
nodemask in a tsk's mempolicy if its previous nodemask is remapped onto a
new set of allowed cpuset nodes where the two nodemasks, as a result of
the remap, are now disjoint.

c0ff7453bb ("cpuset,mm: fix no node to alloc memory when changing
cpuset's mems") adds get_mems_allowed() to prevent the set of allowed
nodes from changing for a thread.  This causes any update to a set of
allowed nodes to stall until put_mems_allowed() is called.

This stall is unncessary, however, if at least one node remains unchanged
in the update to the set of allowed nodes.  This was addressed by
89e8a244b9 ("cpusets: avoid looping when storing to mems_allowed if one
node remains set"), but it's still possible that an empty nodemask may be
read from a mempolicy because the old nodemask may be remapped to the new
nodemask during rebind.  To prevent this, only avoid the stall if there is
no mempolicy for the thread being changed.

This is a temporary solution until all reads from mempolicy nodemasks can
be guaranteed to not be empty without the get_mems_allowed()
synchronization.

Also moves the check for nodemask intersection inside task_lock() so that
tsk->mems_allowed cannot change.  This ensures that nothing can set this
tsk's mems_allowed out from under us and also protects tsk->mempolicy.

Reported-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Paul Menage <paul@paulmenage.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-08-01 12:27:19 -07:00
David Rientjes
6b63ea81d8 cpusets: avoid looping when storing to mems_allowed if one node remains set
commit 89e8a244b9 upstream.

Stable note: Not tracked in Bugzilla. [get|put]_mems_allowed() is
	extremely expensive and severely impacted page allocator performance.
	This is part of a series of patches that reduce page allocator
	overhead.

{get,put}_mems_allowed() exist so that general kernel code may locklessly
access a task's set of allowable nodes without having the chance that a
concurrent write will cause the nodemask to be empty on configurations
where MAX_NUMNODES > BITS_PER_LONG.

This could incur a significant delay, however, especially in low memory
conditions because the page allocator is blocking and reclaim requires
get_mems_allowed() itself.  It is not atypical to see writes to
cpuset.mems take over 2 seconds to complete, for example.  In low memory
conditions, this is problematic because it's one of the most imporant
times to change cpuset.mems in the first place!

The only way a task's set of allowable nodes may change is through cpusets
by writing to cpuset.mems and when attaching a task to a generic code is
not reading the nodemask with get_mems_allowed() at the same time, and
then clearing all the old nodes.  This prevents the possibility that a
reader will see an empty nodemask at the same time the writer is storing a
new nodemask.

If at least one node remains unchanged, though, it's possible to simply
set all new nodes and then clear all the old nodes.  Changing a task's
nodemask is protected by cgroup_mutex so it's guaranteed that two threads
are not changing the same task's nodemask at the same time, so the
nodemask is guaranteed to be stored before another thread changes it and
determines whether a node remains set or not.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Paul Menage <paul@paulmenage.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-08-01 12:27:19 -07:00
John Stultz
dccecc646f ntp: Fix STA_INS/DEL clearing bug
commit 6b1859dba0 upstream.

In commit 6b43ae8a61, I
introduced a bug that kept the STA_INS or STA_DEL bit
from being cleared from time_status via adjtimex()
without forcing STA_PLL first.

Usually once the STA_INS is set, it isn't cleared
until the leap second is applied, so its unlikely this
affected anyone. However during testing I noticed it
took some effort to cancel a leap second once STA_INS
was set.

Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Link: http://lkml.kernel.org/r/1342156917-25092-2-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-08-01 12:26:53 -07:00
Thomas Gleixner
0851978b66 timekeeping: Add missing update call in timekeeping_resume()
This is a backport of 3e997130bd

The leap second rework unearthed another issue of inconsistent data.

On timekeeping_resume() the timekeeper data is updated, but nothing
calls timekeeping_update(), so now the update code in the timer
interrupt sees stale values.

This has been the case before those changes, but then the timer
interrupt was using stale data as well so this went unnoticed for quite
some time.

Add the missing update call, so all the data is consistent everywhere.

Reported-by: Andreas Schwab <schwab@linux-m68k.org>
Reported-and-tested-by: "Rafael J. Wysocki" <rjw@sisk.pl>
Reported-and-tested-by: Martin Steigerwald <Martin@lichtvoll.de>
Cc: John Stultz <johnstul@us.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>,
Cc: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-07-19 08:58:46 -07:00
John Stultz
bb6ed34f2a hrtimer: Update hrtimer base offsets each hrtimer_interrupt
This is a backport of 5baefd6d84

The update of the hrtimer base offsets on all cpus cannot be made
atomically from the timekeeper.lock held and interrupt disabled region
as smp function calls are not allowed there.

clock_was_set(), which enforces the update on all cpus, is called
either from preemptible process context in case of do_settimeofday()
or from the softirq context when the offset modification happened in
the timer interrupt itself due to a leap second.

In both cases there is a race window for an hrtimer interrupt between
dropping timekeeper lock, enabling interrupts and clock_was_set()
issuing the updates. Any interrupt which arrives in that window will
see the new time but operate on stale offsets.

So we need to make sure that an hrtimer interrupt always sees a
consistent state of time and offsets.

ktime_get_update_offsets() allows us to get the current monotonic time
and update the per cpu hrtimer base offsets from hrtimer_interrupt()
to capture a consistent state of monotonic time and the offsets. The
function replaces the existing ktime_get() calls in hrtimer_interrupt().

The overhead of the new function vs. ktime_get() is minimal as it just
adds two store operations.

This ensures that any changes to realtime or boottime offsets are
noticed and stored into the per-cpu hrtimer base structures, prior to
any hrtimer expiration and guarantees that timers are not expired early.

Signed-off-by: John Stultz <johnstul@us.ibm.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Prarit Bhargava <prarit@redhat.com>
Link: http://lkml.kernel.org/r/1341960205-56738-8-git-send-email-johnstul@us.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-07-19 08:58:46 -07:00
Thomas Gleixner
22f4bbcfb1 timekeeping: Provide hrtimer update function
This is a backport of f6c06abfb3

To finally fix the infamous leap second issue and other race windows
caused by functions which change the offsets between the various time
bases (CLOCK_MONOTONIC, CLOCK_REALTIME and CLOCK_BOOTTIME) we need a
function which atomically gets the current monotonic time and updates
the offsets of CLOCK_REALTIME and CLOCK_BOOTTIME with minimalistic
overhead. The previous patch which provides ktime_t offsets allows us
to make this function almost as cheap as ktime_get() which is going to
be replaced in hrtimer_interrupt().

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Link: http://lkml.kernel.org/r/1341960205-56738-7-git-send-email-johnstul@us.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-07-19 08:58:46 -07:00
Thomas Gleixner
6c89f2ce05 hrtimers: Move lock held region in hrtimer_interrupt()
This is a backport of 196951e912

We need to update the base offsets from this code and we need to do
that under base->lock. Move the lock held region around the
ktime_get() calls. The ktime_get() calls are going to be replaced with
a function which gets the time and the offsets atomically.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Link: http://lkml.kernel.org/r/1341960205-56738-6-git-send-email-johnstul@us.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-07-19 08:58:46 -07:00
Thomas Gleixner
03a90b9a6f timekeeping: Maintain ktime_t based offsets for hrtimers
This is a backport of 5b9fe759a6

We need to update the hrtimer clock offsets from the hrtimer interrupt
context. To avoid conversions from timespec to ktime_t maintain a
ktime_t based representation of those offsets in the timekeeper. This
puts the conversion overhead into the code which updates the
underlying offsets and provides fast accessible values in the hrtimer
interrupt.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Prarit Bhargava <prarit@redhat.com>
Link: http://lkml.kernel.org/r/1341960205-56738-4-git-send-email-johnstul@us.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-07-19 08:58:46 -07:00
John Stultz
d21e4baf45 timekeeping: Fix leapsecond triggered load spike issue
This is a backport of 4873fa070a

The timekeeping code misses an update of the hrtimer subsystem after a
leap second happened. Due to that timers based on CLOCK_REALTIME are
either expiring a second early or late depending on whether a leap
second has been inserted or deleted until an operation is initiated
which causes that update. Unless the update happens by some other
means this discrepancy between the timekeeping and the hrtimer data
stays forever and timers are expired either early or late.

The reported immediate workaround - $ data -s "`date`" - is causing a
call to clock_was_set() which updates the hrtimer data structures.
See: http://www.sheeri.com/content/mysql-and-leap-second-high-cpu-and-fix

Add the missing clock_was_set() call to update_wall_time() in case of
a leap second event. The actual update is deferred to softirq context
as the necessary smp function call cannot be invoked from hard
interrupt context.

Signed-off-by: John Stultz <johnstul@us.ibm.com>
Reported-by: Jan Engelhardt <jengelh@inai.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Prarit Bhargava <prarit@redhat.com>
Link: http://lkml.kernel.org/r/1341960205-56738-3-git-send-email-johnstul@us.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-07-19 08:58:43 -07:00
John Stultz
62b787f886 hrtimer: Provide clock_was_set_delayed()
This is a backport of f55a6faa38

clock_was_set() cannot be called from hard interrupt context because
it calls on_each_cpu().

For fixing the widely reported leap seconds issue it is necessary to
call it from hard interrupt context, i.e. the timer tick code, which
does the timekeeping updates.

Provide a new function which denotes it in the hrtimer cpu base
structure of the cpu on which it is called and raise the hrtimer
softirq. We then execute the clock_was_set() notificiation from
softirq context in run_hrtimer_softirq(). The hrtimer softirq is
rarely used, so polling the flag there is not a performance issue.

[ tglx: Made it depend on CONFIG_HIGH_RES_TIMERS. We really should get
  rid of all this ifdeffery ASAP ]

Signed-off-by: John Stultz <johnstul@us.ibm.com>
Reported-by: Jan Engelhardt <jengelh@inai.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Prarit Bhargava <prarit@redhat.com>
Link: http://lkml.kernel.org/r/1341960205-56738-2-git-send-email-johnstul@us.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-07-19 08:58:37 -07:00
Thomas Gleixner
c7e2580578 time: Move common updates to a function
This is a backport of cc06268c6a

While not a bugfix itself, it allows following fixes to backport
in a more straightforward manner.

CC: Thomas Gleixner <tglx@linutronix.de>
CC: Eric Dumazet <eric.dumazet@gmail.com>
CC: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-07-19 08:58:32 -07:00
John Stultz
c33f2424c3 timekeeping: Fix CLOCK_MONOTONIC inconsistency during leapsecond
This is a backport of fad0c66c4b
which resolves a bug the previous commit.

Commit 6b43ae8a61 (ntp: Fix leap-second hrtimer livelock) broke the
leapsecond update of CLOCK_MONOTONIC. The missing leapsecond update to
wall_to_monotonic causes discontinuities in CLOCK_MONOTONIC.

Adjust wall_to_monotonic when NTP inserted a leapsecond.

Reported-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Tested-by: Richard Cochran <richardcochran@gmail.com>
Link: http://lkml.kernel.org/r/1338400497-12420-1-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-07-19 08:58:27 -07:00