The current mainline has copies propagated to *all* nodes, then
tears down the copies we made for nodes that do not contain
counterparts of the desired mountpoint. That sets the right
propagation graph for the copies (at teardown time we move
the slaves of removed node to a surviving peer or directly
to master), but we end up paying a fairly steep price in
useless allocations. It's fairly easy to create a situation
where N calls of mount(2) create exactly N bindings, with
O(N^2) vfsmounts allocated and freed in process.
Fortunately, it is possible to avoid those allocations/freeings.
The trick is to create copies in the right order and find which
one would've eventually become a master with the current algorithm.
It turns out to be possible in O(nodes getting propagation) time
and with no extra allocations at all.
One part is that we need to make sure that eventual master will be
created before its slaves, so we need to walk the propagation
tree in a different order - by peer groups. And iterate through
the peers before dealing with the next group.
Another thing is finding the (earlier) copy that will be a master
of one we are about to create; to do that we are (temporary) marking
the masters of mountpoints we are attaching the copies to.
Either we are in a peer of the last mountpoint we'd dealt with,
or we have the following situation: we are attaching to mountpoint M,
the last copy S_0 had been attached to M_0 and there are sequences
S_0...S_n, M_0...M_n such that S_{i+1} is a master of S_{i},
S_{i} mounted on M{i} and we need to create a slave of the first S_{k}
such that M is getting propagation from M_{k}. It means that the master
of M_{k} will be among the sequence of masters of M. On the
other hand, the nearest marked node in that sequence will either
be the master of M_{k} or the master of M_{k-1} (the latter -
in the case if M_{k-1} is a slave of something M gets propagation
from, but in a wrong peer group).
So we go through the sequence of masters of M until we find
a marked one (P). Let N be the one before it. Then we go through
the sequence of masters of S_0 until we find one (say, S) mounted
on a node D that has P as master and check if D is a peer of N.
If it is, S will be the master of new copy, if not - the master of S
will be.
That's it for the hard part; the rest is fairly simple. Iterator
is in next_group(), handling of one prospective mountpoint is
propagate_one().
It seems to survive all tests and gives a noticably better performance
than the current mainline for setups that are seriously using shared
subtrees.
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
fixes RCU bug - walking through hlist is safe in face of element moves,
since it's self-terminating. Cyclic lists are not - if we end up jumping
to another hash chain, we'll loop infinitely without ever hitting the
original list head.
[fix for dumb braino folded]
Spotted by: Max Kellermann <mk@cm4all.com>
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Don't copy bind mounts of /proc/<pid>/ns/mnt between namespaces.
These files hold references to a mount namespace and copying them
between namespaces could result in a reference counting loop.
The current mnt_ns_loop test prevents loops on the assumption that
mounts don't cross between namespaces. Unfortunately unsharing a
mount namespace and shared substrees can both cause mounts to
propogate between mount namespaces.
Add two flags CL_COPY_UNBINDABLE and CL_COPY_MNT_NS_FILE are added to
control this behavior, and CL_COPY_ALL is redefined as both of them.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Pull VFS updates from Al Viro,
Misc cleanups all over the place, mainly wrt /proc interfaces (switch
create_proc_entry to proc_create(), get rid of the deprecated
create_proc_read_entry() in favor of using proc_create_data() and
seq_file etc).
7kloc removed.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (204 commits)
don't bother with deferred freeing of fdtables
proc: Move non-public stuff from linux/proc_fs.h to fs/proc/internal.h
proc: Make the PROC_I() and PDE() macros internal to procfs
proc: Supply a function to remove a proc entry by PDE
take cgroup_open() and cpuset_open() to fs/proc/base.c
ppc: Clean up scanlog
ppc: Clean up rtas_flash driver somewhat
hostap: proc: Use remove_proc_subtree()
drm: proc: Use remove_proc_subtree()
drm: proc: Use minor->index to label things, not PDE->name
drm: Constify drm_proc_list[]
zoran: Don't print proc_dir_entry data in debug
reiserfs: Don't access the proc_dir_entry in r_open(), r_start() r_show()
proc: Supply an accessor for getting the data from a PDE's parent
airo: Use remove_proc_subtree()
rtl8192u: Don't need to save device proc dir PDE
rtl8187se: Use a dir under /proc/net/r8180/
proc: Add proc_mkdir_data()
proc: Move some bits from linux/proc_fs.h to linux/{of.h,signal.h,tty.h}
proc: Move PDE_NET() to fs/proc/proc_net.c
...
As a matter of policy MNT_READONLY should not be changable if the
original mounter had more privileges than creator of the mount
namespace.
Add the flag CL_UNPRIVILEGED to note when we are copying a mount from
a mount namespace that requires more privileges to a mount namespace
that requires fewer privileges.
When the CL_UNPRIVILEGED flag is set cause clone_mnt to set MNT_NO_REMOUNT
if any of the mnt flags that should never be changed are set.
This protects both mount propagation and the initial creation of a less
privileged mount namespace.
Cc: stable@vger.kernel.org
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Reported-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Sharing mount subtress with mount namespaces created by unprivileged
users allows unprivileged mounts created by unprivileged users to
propagate to mount namespaces controlled by privileged users.
Prevent nasty consequences by changing shared subtrees to slave
subtress when an unprivileged users creates a new mount namespace.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
a) mount --move is checking that ->mnt_parent is non-NULL before
looking if that parent happens to be shared; ->mnt_parent is never
NULL and it's not even an misspelled !mnt_has_parent()
b) pivot_root open-codes is_path_reachable(), poorly.
c) so does path_is_under(), while we are at it.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
vfsmounts have ->mnt_parent pointing either to a different vfsmount
or to itself; it's never NULL and termination condition in loops
traversing the tree towards root is mnt == mnt->mnt_parent. At least
one place (see the next patch) is confused about what's going on;
let's add an explicit helper checking it right way and use it in
all places where we need it. Not that there had been too many,
but...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
some stuff in there can actually become static; some belongs to pnode.h
as it's a private interface between namespace.c and pnode.c...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>