Commit Graph

38 Commits

Author SHA1 Message Date
Johannes Berg
833c95456a device coredump: add new device coredump class
Many devices run firmware and/or complex hardware, and most of that
can have bugs. When it misbehaves, however, it is often much harder
to debug than software running on the host.

Introduce a "device coredump" mechanism to allow dumping internal
device/firmware state through a generalized mechanism. As devices
are different and information needed can vary accordingly, this
doesn't prescribe a file format - it just provides mechanism to
get data to be able to capture it in a generalized way (e.g. in
distributions.)

The dumped data will be readable in sysfs in the virtual device's
data file under /sys/class/devcoredump/devcd*/. Writing to it will
free the data and remove the device, as does a 5-minute timeout.

Note that generalized capturing of such data may result in privacy
issues, so users generally need to be involved. In order to allow
certain users/system integrators/... to disable the feature at all,
introduce a Kconfig option to override the drivers that would like
to have the feature.

For now, this provides two ways of dumping data:
 1) with a vmalloc'ed area, that is then given to the subsystem
    and freed after retrieval or timeout
 2) with a generalized reader/free function method

We could/should add more options, e.g. a list of pages, since the
vmalloc area is very limited on some architectures.

Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-09-23 22:53:15 -07:00
Maarten Lankhorst
35fac7e305 dma-buf: move to drivers/dma-buf
Signed-off-by: Maarten Lankhorst <maarten.lankhorst@canonical.com>
Acked-by: Sumit Semwal <sumit.semwal@linaro.org>
Acked-by: Daniel Vetter <daniel@ffwll.ch>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-07-08 10:51:06 -07:00
Linus Torvalds
09da8dfa98 Merge tag 'pm+acpi-3.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI and power management updates from Rafael Wysocki:
 "As far as the number of commits goes, the top spot belongs to ACPI
  this time with cpufreq in the second position and a handful of PM
  core, PNP and cpuidle updates.  They are fixes and cleanups mostly, as
  usual, with a couple of new features in the mix.

  The most visible change is probably that we will create struct
  acpi_device objects (visible in sysfs) for all devices represented in
  the ACPI tables regardless of their status and there will be a new
  sysfs attribute under those objects allowing user space to check that
  status via _STA.

  Consequently, ACPI device eject or generally hot-removal will not
  delete those objects, unless the table containing the corresponding
  namespace nodes is unloaded, which is extremely rare.  Also ACPI
  container hotplug will be handled quite a bit differently and cpufreq
  will support CPU boost ("turbo") generically and not only in the
  acpi-cpufreq driver.

  Specifics:

   - ACPI core changes to make it create a struct acpi_device object for
     every device represented in the ACPI tables during all namespace
     scans regardless of the current status of that device.  In
     accordance with this, ACPI hotplug operations will not delete those
     objects, unless the underlying ACPI tables go away.

   - On top of the above, new sysfs attribute for ACPI device objects
     allowing user space to check device status by triggering the
     execution of _STA for its ACPI object.  From Srinivas Pandruvada.

   - ACPI core hotplug changes reducing code duplication, integrating
     the PCI root hotplug with the core and reworking container hotplug.

   - ACPI core simplifications making it use ACPI_COMPANION() in the
     code "glueing" ACPI device objects to "physical" devices.

   - ACPICA update to upstream version 20131218.  This adds support for
     the DBG2 and PCCT tables to ACPICA, fixes some bugs and improves
     debug facilities.  From Bob Moore, Lv Zheng and Betty Dall.

   - Init code change to carry out the early ACPI initialization
     earlier.  That should allow us to use ACPI during the timekeeping
     initialization and possibly to simplify the EFI initialization too.
     From Chun-Yi Lee.

   - Clenups of the inclusions of ACPI headers in many places all over
     from Lv Zheng and Rashika Kheria (work in progress).

   - New helper for ACPI _DSM execution and rework of the code in
     drivers that uses _DSM to execute it via the new helper.  From
     Jiang Liu.

   - New Win8 OSI blacklist entries from Takashi Iwai.

   - Assorted ACPI fixes and cleanups from Al Stone, Emil Goode, Hanjun
     Guo, Lan Tianyu, Masanari Iida, Oliver Neukum, Prarit Bhargava,
     Rashika Kheria, Tang Chen, Zhang Rui.

   - intel_pstate driver updates, including proper Baytrail support,
     from Dirk Brandewie and intel_pstate documentation from Ramkumar
     Ramachandra.

   - Generic CPU boost ("turbo") support for cpufreq from Lukasz
     Majewski.

   - powernow-k6 cpufreq driver fixes from Mikulas Patocka.

   - cpufreq core fixes and cleanups from Viresh Kumar, Jane Li, Mark
     Brown.

   - Assorted cpufreq drivers fixes and cleanups from Anson Huang, John
     Tobias, Paul Bolle, Paul Walmsley, Sachin Kamat, Shawn Guo, Viresh
     Kumar.

   - cpuidle cleanups from Bartlomiej Zolnierkiewicz.

   - Support for hibernation APM events from Bin Shi.

   - Hibernation fix to avoid bringing up nonboot CPUs with ACPI EC
     disabled during thaw transitions from Bjørn Mork.

   - PM core fixes and cleanups from Ben Dooks, Leonardo Potenza, Ulf
     Hansson.

   - PNP subsystem fixes and cleanups from Dmitry Torokhov, Levente
     Kurusa, Rashika Kheria.

   - New tool for profiling system suspend from Todd E Brandt and a
     cpupower tool cleanup from One Thousand Gnomes"

* tag 'pm+acpi-3.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (153 commits)
  thermal: exynos: boost: Automatic enable/disable of BOOST feature (at Exynos4412)
  cpufreq: exynos4x12: Change L0 driver data to CPUFREQ_BOOST_FREQ
  Documentation: cpufreq / boost: Update BOOST documentation
  cpufreq: exynos: Extend Exynos cpufreq driver to support boost
  cpufreq / boost: Kconfig: Support for software-managed BOOST
  acpi-cpufreq: Adjust the code to use the common boost attribute
  cpufreq: Add boost frequency support in core
  intel_pstate: Add trace point to report internal state.
  cpufreq: introduce cpufreq_generic_get() routine
  ARM: SA1100: Create dummy clk_get_rate() to avoid build failures
  cpufreq: stats: create sysfs entries when cpufreq_stats is a module
  cpufreq: stats: free table and remove sysfs entry in a single routine
  cpufreq: stats: remove hotplug notifiers
  cpufreq: stats: handle cpufreq_unregister_driver() and suspend/resume properly
  cpufreq: speedstep: remove unused speedstep_get_state
  platform: introduce OF style 'modalias' support for platform bus
  PM / tools: new tool for suspend/resume performance optimization
  ACPI: fix module autoloading for ACPI enumerated devices
  ACPI: add module autoloading support for ACPI enumerated devices
  ACPI: fix create_modalias() return value handling
  ...
2014-01-24 15:51:02 -08:00
Russell King
2a41e6070d drivers/base: provide an infrastructure for componentised subsystems
Subsystems such as ALSA, DRM and others require a single card-level
device structure to represent a subsystem.  However, firmware tends to
describe the individual devices and the connections between them.

Therefore, we need a way to gather up the individual component devices
together, and indicate when we have all the component devices.

We do this in DT by providing a "superdevice" node which specifies
the components, eg:

	imx-drm {
		compatible = "fsl,drm";
		crtcs = <&ipu1>;
		connectors = <&hdmi>;
	};

The superdevice is declared into the component support, along with the
subcomponents.  The superdevice receives callbacks to locate the
subcomponents, and identify when all components are present.  At this
point, we bind the superdevice, which causes the appropriate subsystem
to be initialised in the conventional way.

When any of the components or superdevice are removed from the system,
we unbind the superdevice, thereby taking the subsystem down.

Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-01-10 16:27:36 -08:00
Rafael J. Wysocki
caa73ea158 ACPI / hotplug / driver core: Handle containers in a special way
ACPI container devices require special hotplug handling, at least
on some systems, since generally user space needs to carry out
system-specific cleanup before it makes sense to offline devices in
the container.  However, the current ACPI hotplug code for containers
first attempts to offline devices in the container and only then it
notifies user space of the container offline.

Moreover, after commit 202317a573 (ACPI / scan: Add acpi_device
objects for all device nodes in the namespace), ACPI device objects
representing containers are present as long as the ACPI namespace
nodes corresponding to them are present, which may be forever, even
if the container devices are physically detached from the system (the
return values of the corresponding _STA methods change in those
cases, but generally the namespace nodes themselves are still there).
Thus it is useful to introduce entities representing containers that
will go away during container hot-unplug.

The goal of this change is to address both the above issues.

The idea is to create a "companion" container system device for each
of the ACPI container device objects during the initial namespace
scan or on a hotplug event making the container present.  That system
device will be unregistered on container removal.  A new bus type
for container devices is added for this purpose, because device
offline and online operations need to be defined for them.  The
online operation is a trivial function that is always successful
and the offline uses a callback pointed to by the container device's
offline member.

For ACPI containers that callback simply walks the list of ACPI
device objects right below the container object (its children) and
checks if all of their physical companion devices are offline.  If
that's not the case, it returns -EBUSY and the container system
devivce cannot be put offline.  Consequently, to put the container
system device offline, it is necessary to put all of the physical
devices depending on its ACPI companion object offline beforehand.

Container system devices created for ACPI container objects are
initially online.  They are created by the container ACPI scan
handler whose hotplug.demand_offline flag is set.  That causes
acpi_scan_hot_remove() to check if the companion container system
device is offline before attempting to remove an ACPI container or
any devices below it.  If the check fails, a KOBJ_CHANGE uevent is
emitted for the container system device in question and user space
is expected to offline all devices below the container and the
container itself in response to it.  Then, user space can finalize
the removal of the container with the help of its ACPI device
object's eject attribute in sysfs.

Tested-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-12-29 15:25:48 +01:00
Alexander Graf
bf550fc93d Merge remote-tracking branch 'origin/next' into kvm-ppc-next
Conflicts:
	mm/Kconfig

CMA DMA split and ZSWAP introduction were conflicting, fix up manually.
2013-08-29 00:41:59 +02:00
Aneesh Kumar K.V
f825c736e7 mm/cma: Move dma contiguous changes into a seperate config
We want to use CMA for allocating hash page table and real mode area for
PPC64. Hence move DMA contiguous related changes into a seperate config
so that ppc64 can enable CMA without requiring DMA contiguous.

Acked-by: Michal Nazarewicz <mina86@mina86.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[removed defconfig changes]
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
2013-07-02 10:08:22 +02:00
Maarten Lankhorst
786d7257e5 reservation: cross-device reservation support, v4
This adds support for a generic reservations framework that can be
hooked up to ttm and dma-buf and allows easy sharing of reservations
across devices.

The idea is that a dma-buf and ttm object both will get a pointer
to a struct reservation_object, which has to be reserved before
anything is done with the contents of the dma-buf.

Changes since v1:
 - Fix locking issue in ticket_reserve, which could cause mutex_unlock
   to be called too many times.
Changes since v2:
 - All fence related calls and members have been taken out for now,
   what's left is the bare minimum to be useful for ttm locking conversion.
Changes since v3:
 - Removed helper functions too. The documentation has an example
   implementation for locking. With the move to ww_mutex there is no
   need to have much logic any more.

Signed-off-by: Maarten Lankhorst <maarten.lankhorst@canonical.com>
Reviewed-by: Jerome Glisse <jglisse@redhat.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
2013-06-28 12:02:15 +10:00
Linus Walleij
ab78029ecc drivers/pinctrl: grab default handles from device core
This makes the device core auto-grab the pinctrl handle and set
the "default" (PINCTRL_STATE_DEFAULT) state for every device
that is present in the device model right before probe. This will
account for the lion's share of embedded silicon devcies.

A modification of the semantics for pinctrl_get() is also done:
previously if the pinctrl handle for a certain device was already
taken, the pinctrl core would return an error. Now, since the
core may have already default-grabbed the handle and set its
state to "default", if the handle was already taken, this will
be disregarded and the located, previously instanitated handle
will be returned to the caller.

This way all code in drivers explicitly requesting their pinctrl
handlers will still be functional, and drivers that want to
explicitly retrieve and switch their handles can still do that.
But if the desired functionality is just boilerplate of this
type in the probe() function:

struct pinctrl  *p;

p = devm_pinctrl_get_select_default(&dev);
if (IS_ERR(p)) {
   if (PTR_ERR(p) == -EPROBE_DEFER)
        return -EPROBE_DEFER;
        dev_warn(&dev, "no pinctrl handle\n");
}

The discussion began with the addition of such boilerplate
to the omap4 keypad driver:
http://marc.info/?l=linux-input&m=135091157719300&w=2

A previous approach using notifiers was discussed:
http://marc.info/?l=linux-kernel&m=135263661110528&w=2
This failed because it could not handle deferred probes.

This patch alone does not solve the entire dilemma faced:
whether code should be distributed into the drivers or
if it should be centralized to e.g. a PM domain. But it
solves the immediate issue of the addition of boilerplate
to a lot of drivers that just want to grab the default
state. As mentioned, they can later explicitly retrieve
the handle and set different states, and this could as
well be done by e.g. PM domains as it is only related
to a certain struct device * pointer.

ChangeLog v4->v5 (Stephen):
- Simplified the devicecore grab code.
- Deleted a piece of documentation recommending that pins
  be mapped to a device rather than hogged.
ChangeLog v3->v4 (Linus):
- Drop overzealous NULL checks.
- Move kref initialization to pinctrl_create().
- Seeking Tested-by from Stephen Warren so we do not disturb
  the Tegra platform.
- Seeking ACK on this from Greg (and others who like it) so I
  can merge it through the pinctrl subsystem.
ChangeLog v2->v3 (Linus):
- Abstain from using IS_ERR_OR_NULL() in the driver core,
  Russell recently sent a patch to remove it. Handle the
  NULL case explicitly even though it's a bogus case.
- Make sure we handle probe deferral correctly in the device
  core file. devm_kfree() the container on error so we don't
  waste memory for devices without pinctrl handles.
- Introduce reference counting into the pinctrl core using
  <linux/kref.h> so that we don't release pinctrl handles
  that have been obtained for two or more places.
ChangeLog v1->v2 (Linus):
- Only store a pointer in the device struct, and only allocate
  this if it's really used by the device.

Cc: Felipe Balbi <balbi@ti.com>
Cc: Benoit Cousson <b-cousson@ti.com>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Cc: Mitch Bradley <wmb@firmworks.com>
Cc: Ulf Hansson <ulf.hansson@linaro.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Jean-Christophe PLAGNIOL-VILLARD <plagnioj@jcrosoft.com>
Cc: Rickard Andersson <rickard.andersson@stericsson.com>
Cc: Russell King <linux@arm.linux.org.uk>
Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
[swarren: fixed and simplified error-handling in pinctrl_bind_pins(), to
correctly handle deferred probe. Removed admonition from docs not to use
pinctrl hogs for devices]
Signed-off-by: Stephen Warren <swarren@nvidia.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2013-01-23 16:39:51 +01:00
Marek Szyprowski
c64be2bb1c drivers: add Contiguous Memory Allocator
The Contiguous Memory Allocator is a set of helper functions for DMA
mapping framework that improves allocations of contiguous memory chunks.

CMA grabs memory on system boot, marks it with MIGRATE_CMA migrate type
and gives back to the system. Kernel is allowed to allocate only movable
pages within CMA's managed memory so that it can be used for example for
page cache when DMA mapping do not use it. On
dma_alloc_from_contiguous() request such pages are migrated out of CMA
area to free required contiguous block and fulfill the request. This
allows to allocate large contiguous chunks of memory at any time
assuming that there is enough free memory available in the system.

This code is heavily based on earlier works by Michal Nazarewicz.

Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Signed-off-by: Michal Nazarewicz <mina86@mina86.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Tested-by: Rob Clark <rob.clark@linaro.org>
Tested-by: Ohad Ben-Cohen <ohad@wizery.com>
Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org>
Tested-by: Robert Nelson <robertcnelson@gmail.com>
Tested-by: Barry Song <Baohua.Song@csr.com>
2012-05-21 15:09:37 +02:00
Lee Jones
74d1d82cda drivers/base: add bus for System-on-Chip devices
Traditionally, any System-on-Chip based platform creates a flat list
of platform_devices directly under /sys/devices/platform.

In order to give these some better structure, this introduces a new
bus type for soc_devices that are registered with the new
soc_device_register() function.  All devices that are on the same
chip should then be registered as child devices of the soc device.

The soc bus also exports a few standardised device attributes which
allow user space to query the specific type of soc.

Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-02-10 11:42:25 -08:00
Greg Kroah-Hartman
e9c688a327 driver core: remove drivers/base/sys.c and include/linux/sysdev.h
Now that all users of 'struct sysdev' are removed from the kernel, we
can safely remove the .h and .c files for this code, to ensure that no
one accidentally starts to use it again.

Many thanks for Kay who did all the hard work here on making this
happen.

Cc: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2012-01-22 14:31:15 -07:00
Linus Torvalds
8e369672af Merge branch 'dma-buf-merge' of git://people.freedesktop.org/~airlied/linux
* 'dma-buf-merge' of git://people.freedesktop.org/~airlied/linux:
  dma-buf: mark EXPERIMENTAL for 1st release.
  dma-buf: Documentation for buffer sharing framework
  dma-buf: Introduce dma buffer sharing mechanism
2012-01-08 14:05:09 -08:00
Sumit Semwal
d15bd7ee44 dma-buf: Introduce dma buffer sharing mechanism
This is the first step in defining a dma buffer sharing mechanism.

A new buffer object dma_buf is added, with operations and API to allow easy
sharing of this buffer object across devices.

The framework allows:
- creation of a buffer object, its association with a file pointer, and
   associated allocator-defined operations on that buffer. This operation is
   called the 'export' operation.
- different devices to 'attach' themselves to this exported buffer object, to
  facilitate backing storage negotiation, using dma_buf_attach() API.
- the exported buffer object to be shared with the other entity by asking for
   its 'file-descriptor (fd)', and sharing the fd across.
- a received fd to get the buffer object back, where it can be accessed using
   the associated exporter-defined operations.
- the exporter and user to share the scatterlist associated with this buffer
   object using map_dma_buf and unmap_dma_buf operations.

Atleast one 'attach()' call is required to be made prior to calling the
map_dma_buf() operation.

Couple of building blocks in map_dma_buf() are added to ease introduction
of sync'ing across exporter and users, and late allocation by the exporter.

For this first version, this framework will work with certain conditions:
- *ONLY* exporter will be allowed to mmap to userspace (outside of this
   framework - mmap is not a buffer object operation),
- currently, *ONLY* users that do not need CPU access to the buffer are
   allowed.

More details are there in the documentation patch.

This is based on design suggestions from many people at the mini-summits[1],
most notably from Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
Daniel Vetter <daniel@ffwll.ch>.

The implementation is inspired from proof-of-concept patch-set from
Tomasz Stanislawski <t.stanislaws@samsung.com>, who demonstrated buffer sharing
between two v4l2 devices. [2]

[1]: https://wiki.linaro.org/OfficeofCTO/MemoryManagement
[2]: http://lwn.net/Articles/454389

Signed-off-by: Sumit Semwal <sumit.semwal@linaro.org>
Signed-off-by: Sumit Semwal <sumit.semwal@ti.com>
Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Reviewed-by: Dave Airlie <airlied@redhat.com>
Reviewed-and-Tested-by: Rob Clark <rob.clark@linaro.org>
Signed-off-by: Dave Airlie <airlied@redhat.com>
2012-01-06 10:20:21 +00:00
Ben Hutchings
ccbc60d3e1 topology: Provide CPU topology in sysfs in !SMP configurations
We should provide topology information to userland even if it's not
very interesting.  The current code appears to work properly for !SMP
(tested on i386).

Reference: http://bugs.debian.org/649216
Reported-by: Marcus Osdoba <marcus.osdoba@googlemail.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-11-26 20:12:47 -08:00
Linus Torvalds
f5fc87905e Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/regmap
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/regmap:
  regulator: Convert tps65023 to use regmap API
  regmap: Add SPI bus support
  regmap: Add I2C bus support
  regmap: Add generic non-memory mapped register access API
2011-07-23 11:14:47 -07:00
Mark Brown
b83a313bf2 regmap: Add generic non-memory mapped register access API
There are many places in the tree where we implement register access for
devices on non-memory mapped buses, especially I2C and SPI. Since hardware
designers seem to have settled on a relatively consistent set of register
interfaces this can be effectively factored out into shared code.  There
are a standard set of formats for marshalling data for exchange with the
device, with the actual I/O mechanisms generally being simple byte
streams.

We create an abstraction for marshaling data into formats which can be
sent on the control interfaces, and create a standard method for
plugging in actual transport underneath that.

This is mostly a refactoring and renaming of the bottom level of the
existing code for sharing register I/O which we have in ASoC. A
subsequent patch in this series converts ASoC to use this.  The main
difference in interface is that reads return values by writing to a
location provided by a pointer rather than in the return value, ensuring
we can use the full range of the type for register data.  We also use
unsigned types rather than ints for the same reason.

As some of the devices can have very large register maps the existing
ASoC code also contains infrastructure for managing register caches.
This cache work will be moved over in a future stage to allow for
separate review, the current patch only deals with the physical I/O.

Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Acked-by: Liam Girdwood <lrg@ti.com>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Acked-by: Wolfram Sang <w.sang@pengutronix.de>
Acked-by: Grant Likely <grant.likely@secretlab.ca>
2011-07-23 07:56:03 +01:00
Ohad Ben-Cohen
ab493a0f0f drivers: iommu: move to a dedicated folder
Create a dedicated folder for iommu drivers, and move the base
iommu implementation over there.

Grouping the various iommu drivers in a single location will help
finding similar problems shared by different platforms, so they
could be solved once, in the iommu framework, instead of solved
differently (or duplicated) in each driver.

Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2011-06-14 14:47:41 +02:00
Rafael J. Wysocki
40dc166cb5 PM / Core: Introduce struct syscore_ops for core subsystems PM
Some subsystems need to carry out suspend/resume and shutdown
operations with one CPU on-line and interrupts disabled.  The only
way to register such operations is to define a sysdev class and
a sysdev specifically for this purpose which is cumbersome and
inefficient.  Moreover, the arguments taken by sysdev suspend,
resume and shutdown callbacks are practically never necessary.

For this reason, introduce a simpler interface allowing subsystems
to register operations to be executed very late during system suspend
and shutdown and very early during resume in the form of
strcut syscore_ops objects.

Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-03-15 00:43:46 +01:00
matt mooney
7a868088ee driver-core: base: change to new flag variable
Replace EXTRA_CFLAGS with ccflags-y.

Signed-off-by: matt mooney <mfm@muteddisk.com>
Acked-by: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-10-22 10:16:44 -07:00
Kay Sievers
2b2af54a5b Driver Core: devtmpfs - kernel-maintained tmpfs-based /dev
Devtmpfs lets the kernel create a tmpfs instance called devtmpfs
very early at kernel initialization, before any driver-core device
is registered. Every device with a major/minor will provide a
device node in devtmpfs.

Devtmpfs can be changed and altered by userspace at any time,
and in any way needed - just like today's udev-mounted tmpfs.
Unmodified udev versions will run just fine on top of it, and will
recognize an already existing kernel-created device node and use it.
The default node permissions are root:root 0600. Proper permissions
and user/group ownership, meaningful symlinks, all other policy still
needs to be applied by userspace.

If a node is created by devtmps, devtmpfs will remove the device node
when the device goes away. If the device node was created by
userspace, or the devtmpfs created node was replaced by userspace, it
will no longer be removed by devtmpfs.

If it is requested to auto-mount it, it makes init=/bin/sh work
without any further userspace support. /dev will be fully populated
and dynamic, and always reflect the current device state of the kernel.
With the commonly used dynamic device numbers, it solves the problem
where static devices nodes may point to the wrong devices.

It is intended to make the initial bootup logic simpler and more robust,
by de-coupling the creation of the inital environment, to reliably run
userspace processes, from a complex userspace bootstrap logic to provide
a working /dev.

Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Jan Blunck <jblunck@suse.de>
Tested-By: Harald Hoyer <harald@redhat.com>
Tested-By: Scott James Remnant <scott@ubuntu.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-09-15 09:50:49 -07:00
Ming Lei
a56af87648 driver-core: move dma-coherent.c from kernel to driver/base
Placing dma-coherent.c in driver/base is better than in kernel,
since it contains code to do per-device coherent dma memory
handling.

Signed-off-by: Ming Lei <tom.leiming@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-09-15 09:50:47 -07:00
Joerg Roedel
1aaf118352 select IOMMU_API when DMAR and/or AMD_IOMMU is selected
These two IOMMUs can implement the current version of this API. So
select the API if one or both of these IOMMU drivers is selected.

Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
2009-01-03 14:10:09 +01:00
Linus Torvalds
b297d520b9 Merge branch 'dmapool' of git://git.kernel.org/pub/scm/linux/kernel/git/willy/misc
* 'dmapool' of git://git.kernel.org/pub/scm/linux/kernel/git/willy/misc:
  pool: Improve memory usage for devices which can't cross boundaries
  Change dmapool free block management
  dmapool: Tidy up includes and add comments
  dmapool: Validate parameters to dma_pool_create
  Avoid taking waitqueue lock in dmapool
  dmapool: Fix style problems
  Move dmapool.c to mm/ directory
2008-02-05 19:05:48 -08:00
Randy Dunlap
92b421416f driver core: fix build with SYSFS=n
When SYSFS=n and MODULES=y, build ends with:

linux-2.6.24-rc6-mm1/drivers/base/module.c: In function 'module_add_driver':
linux-2.6.24-rc6-mm1/drivers/base/module.c:49: error: 'module_kset' undeclared (first use in this function)
make[3]: *** [drivers/base/module.o] Error 1

Below is one possible fix.
Build-tested with all 4 config combinations of SYSFS & MODULES.

Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2008-01-24 20:40:42 -08:00