Pull irq fixes from Thomas Gleixner:
"This udpate delivers:
- A fix for dynamic interrupt allocation on x86 which is required to
exclude the GSI interrupts from the dynamic allocatable range.
This was detected with the newfangled tablet SoCs which have GPIOs
and therefor allocate a range of interrupts. The MSI allocations
already excluded the GSI range, so we never noticed before.
- The last missing set_irq_affinity() repair, which was delayed due
to testing issues
- A few bug fixes for the armada SoC interrupt controller
- A memory allocation fix for the TI crossbar interrupt controller
- A trivial kernel-doc warning fix"
* 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
irqchip: irq-crossbar: Not allocating enough memory
irqchip: armanda: Sanitize set_irq_affinity()
genirq: x86: Ensure that dynamic irq allocation does not conflict
linux/interrupt.h: fix new kernel-doc warnings
irqchip: armada-370-xp: Fix releasing of MSIs
irqchip: armada-370-xp: implement the ->check_device() msi_chip operation
irqchip: armada-370-xp: fix invalid cast of signed value into unsigned variable
Pull timer fixes from Thomas Gleixner:
"This update brings along:
- Two fixes for long standing bugs in the hrtimer code, one which
prevents remote enqueuing and the other preventing arbitrary delays
after a interrupt hang was detected
- A fix in the timer wheel which prevents math overflow
- A fix for a long standing issue with the architected ARM timer
related to the C3STOP mechanism.
- A trivial compile fix for nspire SoC clocksource"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
timer: Prevent overflow in apply_slack
hrtimer: Prevent remote enqueue of leftmost timers
hrtimer: Prevent all reprogramming if hang detected
clocksource: nspire: Fix compiler warning
clocksource: arch_arm_timer: Fix age-old arch timer C3STOP detection issue
Pull tracing fix from Steven Rostedt:
"This is a small fix where the trigger code used the wrong
rcu_dereference(). It required rcu_dereference_sched() instead of the
normal rcu_dereference(). It produces a nasty RCU lockdep splat due
to the incorrect rcu notation"
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
* tag 'trace-fixes-v3.15-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
tracing: Use rcu_dereference_sched() for trace event triggers
As trace event triggers are now part of the mainline kernel, I added
my trace event trigger tests to my test suite I run on all my kernels.
Now these tests get run under different config options, and one of
those options is CONFIG_PROVE_RCU, which checks under lockdep that
the rcu locking primitives are being used correctly. This triggered
the following splat:
===============================
[ INFO: suspicious RCU usage. ]
3.15.0-rc2-test+ #11 Not tainted
-------------------------------
kernel/trace/trace_events_trigger.c:80 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 1, debug_locks = 0
4 locks held by swapper/1/0:
#0: ((&(&j_cdbs->work)->timer)){..-...}, at: [<ffffffff8104d2cc>] call_timer_fn+0x5/0x1be
#1: (&(&pool->lock)->rlock){-.-...}, at: [<ffffffff81059856>] __queue_work+0x140/0x283
#2: (&p->pi_lock){-.-.-.}, at: [<ffffffff8106e961>] try_to_wake_up+0x2e/0x1e8
#3: (&rq->lock){-.-.-.}, at: [<ffffffff8106ead3>] try_to_wake_up+0x1a0/0x1e8
stack backtrace:
CPU: 1 PID: 0 Comm: swapper/1 Not tainted 3.15.0-rc2-test+ #11
Hardware name: /DG965MQ, BIOS MQ96510J.86A.0372.2006.0605.1717 06/05/2006
0000000000000001 ffff88007e083b98 ffffffff819f53a5 0000000000000006
ffff88007b0942c0 ffff88007e083bc8 ffffffff81081307 ffff88007ad96d20
0000000000000000 ffff88007af2d840 ffff88007b2e701c ffff88007e083c18
Call Trace:
<IRQ> [<ffffffff819f53a5>] dump_stack+0x4f/0x7c
[<ffffffff81081307>] lockdep_rcu_suspicious+0x107/0x110
[<ffffffff810ee51c>] event_triggers_call+0x99/0x108
[<ffffffff810e8174>] ftrace_event_buffer_commit+0x42/0xa4
[<ffffffff8106aadc>] ftrace_raw_event_sched_wakeup_template+0x71/0x7c
[<ffffffff8106bcbf>] ttwu_do_wakeup+0x7f/0xff
[<ffffffff8106bd9b>] ttwu_do_activate.constprop.126+0x5c/0x61
[<ffffffff8106eadf>] try_to_wake_up+0x1ac/0x1e8
[<ffffffff8106eb77>] wake_up_process+0x36/0x3b
[<ffffffff810575cc>] wake_up_worker+0x24/0x26
[<ffffffff810578bc>] insert_work+0x5c/0x65
[<ffffffff81059982>] __queue_work+0x26c/0x283
[<ffffffff81059999>] ? __queue_work+0x283/0x283
[<ffffffff810599b7>] delayed_work_timer_fn+0x1e/0x20
[<ffffffff8104d3a6>] call_timer_fn+0xdf/0x1be^M
[<ffffffff8104d2cc>] ? call_timer_fn+0x5/0x1be
[<ffffffff81059999>] ? __queue_work+0x283/0x283
[<ffffffff8104d823>] run_timer_softirq+0x1a4/0x22f^M
[<ffffffff8104696d>] __do_softirq+0x17b/0x31b^M
[<ffffffff81046d03>] irq_exit+0x42/0x97
[<ffffffff81a08db6>] smp_apic_timer_interrupt+0x37/0x44
[<ffffffff81a07a2f>] apic_timer_interrupt+0x6f/0x80
<EOI> [<ffffffff8100a5d8>] ? default_idle+0x21/0x32
[<ffffffff8100a5d6>] ? default_idle+0x1f/0x32
[<ffffffff8100ac10>] arch_cpu_idle+0xf/0x11
[<ffffffff8107b3a4>] cpu_startup_entry+0x1a3/0x213
[<ffffffff8102a23c>] start_secondary+0x212/0x219
The cause is that the triggers are protected by rcu_read_lock_sched() but
the data is dereferenced with rcu_dereference() which expects it to
be protected with rcu_read_lock(). The proper reference should be
rcu_dereference_sched().
Cc: Tom Zanussi <tom.zanussi@linux.intel.com>
Cc: stable@vger.kernel.org # 3.14+
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Pull module fixes from Rusty Russell:
"Fixed one missing place for the new taint flag, and remove a warning
giving only false positives (now we finally figured out why)"
* tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux:
module: remove warning about waiting module removal.
Fix: tracing: use 'E' instead of 'X' for unsigned module taint flag
On architectures with sizeof(int) < sizeof (long), the
computation of mask inside apply_slack() can be undefined if the
computed bit is > 32.
E.g. with: expires = 0xffffe6f5 and slack = 25, we get:
expires_limit = 0x20000000e
bit = 33
mask = (1 << 33) - 1 /* undefined */
On x86, mask becomes 1 and and the slack is not applied properly.
On s390, mask is -1, expires is set to 0 and the timer fires immediately.
Use 1UL << bit to solve that issue.
Suggested-by: Deborah Townsend <dstownse@us.ibm.com>
Signed-off-by: Jiri Bohac <jbohac@suse.cz>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20140418152310.GA13654@midget.suse.cz
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If a cpu is idle and starts an hrtimer which is not pinned on that
same cpu, the nohz code might target the timer to a different cpu.
In the case that we switch the cpu base of the timer we already have a
sanity check in place, which determines whether the timer is earlier
than the current leftmost timer on the target cpu. In that case we
enqueue the timer on the current cpu because we cannot reprogram the
clock event device on the target.
If the timers base is already the target CPU we do not have this
sanity check in place so we enqueue the timer as the leftmost timer in
the target cpus rb tree, but we cannot reprogram the clock event
device on the target cpu. So the timer expires late and subsequently
prevents the reprogramming of the target cpu clock event device until
the previously programmed event fires or a timer with an earlier
expiry time gets enqueued on the target cpu itself.
Add the same target check as we have for the switch base case and
start the timer on the current cpu if it would become the leftmost
timer on the target.
[ tglx: Rewrote subject and changelog ]
Signed-off-by: Leon Ma <xindong.ma@intel.com>
Link: http://lkml.kernel.org/r/1398847391-5994-1-git-send-email-xindong.ma@intel.com
Cc: stable@vger.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If the last hrtimer interrupt detected a hang it sets hang_detected=1
and programs the clock event device with a delay to let the system
make progress.
If hang_detected == 1, we prevent reprogramming of the clock event
device in hrtimer_reprogram() but not in hrtimer_force_reprogram().
This can lead to the following situation:
hrtimer_interrupt()
hang_detected = 1;
program ce device to Xms from now (hang delay)
We have two timers pending:
T1 expires 50ms from now
T2 expires 5s from now
Now T1 gets canceled, which causes hrtimer_force_reprogram() to be
invoked, which in turn programs the clock event device to T2 (5
seconds from now).
Any hrtimer_start after that will not reprogram the hardware due to
hang_detected still being set. So we effectivly block all timers until
the T2 event fires and cleans up the hang situation.
Add a check for hang_detected to hrtimer_force_reprogram() which
prevents the reprogramming of the hang delay in the hardware
timer. The subsequent hrtimer_interrupt will resolve all outstanding
issues.
[ tglx: Rewrote subject and changelog and fixed up the comment in
hrtimer_force_reprogram() ]
Signed-off-by: Stuart Hayes <stuart.w.hayes@gmail.com>
Link: http://lkml.kernel.org/r/53602DC6.2060101@gmail.com
Cc: stable@vger.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull ftrace bugfix from Steven Rostedt:
"Takao Indoh reported that he was able to cause a ftrace bug while
loading a module and enabling function tracing at the same time.
He uncovered a race where the module when loaded will convert the
calls to mcount into nops, and expects the module's text to be RW.
But when function tracing is enabled, it will convert all kernel text
(core and module) from RO to RW to convert the nops to calls to ftrace
to record the function. After the convertion, it will convert all the
text back from RW to RO.
The issue is, it will also convert the module's text that is loading.
If it converts it to RO before ftrace does its conversion, it will
cause ftrace to fail and require a reboot to fix it again.
This patch moves the ftrace module update that converts calls to
mcount into nops to be done when the module state is still
MODULE_STATE_UNFORMED. This will ignore the module when the text is
being converted from RW back to RO"
* tag 'trace-fixes-v3.15-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
ftrace/module: Hardcode ftrace_module_init() call into load_module()
A race exists between module loading and enabling of function tracer.
CPU 1 CPU 2
----- -----
load_module()
module->state = MODULE_STATE_COMING
register_ftrace_function()
mutex_lock(&ftrace_lock);
ftrace_startup()
update_ftrace_function();
ftrace_arch_code_modify_prepare()
set_all_module_text_rw();
<enables-ftrace>
ftrace_arch_code_modify_post_process()
set_all_module_text_ro();
[ here all module text is set to RO,
including the module that is
loading!! ]
blocking_notifier_call_chain(MODULE_STATE_COMING);
ftrace_init_module()
[ tries to modify code, but it's RO, and fails!
ftrace_bug() is called]
When this race happens, ftrace_bug() will produces a nasty warning and
all of the function tracing features will be disabled until reboot.
The simple solution is to treate module load the same way the core
kernel is treated at boot. To hardcode the ftrace function modification
of converting calls to mcount into nops. This is done in init/main.c
there's no reason it could not be done in load_module(). This gives
a better control of the changes and doesn't tie the state of the
module to its notifiers as much. Ftrace is special, it needs to be
treated as such.
The reason this would work, is that the ftrace_module_init() would be
called while the module is in MODULE_STATE_UNFORMED, which is ignored
by the set_all_module_text_ro() call.
Link: http://lkml.kernel.org/r/1395637826-3312-1-git-send-email-indou.takao@jp.fujitsu.com
Reported-by: Takao Indoh <indou.takao@jp.fujitsu.com>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: stable@vger.kernel.org # 2.6.38+
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
On x86 the allocation of irq descriptors may allocate interrupts which
are in the range of the GSI interrupts. That's wrong as those
interrupts are hardwired and we don't have the irq domain translation
like PPC. So one of these interrupts can be hooked up later to one of
the devices which are hard wired to it and the io_apic init code for
that particular interrupt line happily reuses that descriptor with a
completely different configuration so hell breaks lose.
Inside x86 we allocate dynamic interrupts from above nr_gsi_irqs,
except for a few usage sites which have not yet blown up in our face
for whatever reason. But for drivers which need an irq range, like the
GPIO drivers, we have no limit in place and we don't want to expose
such a detail to a driver.
To cure this introduce a function which an architecture can implement
to impose a lower bound on the dynamic interrupt allocations.
Implement it for x86 and set the lower bound to nr_gsi_irqs, which is
the end of the hardwired interrupt space, so all dynamic allocations
happen above.
That not only allows the GPIO driver to work sanely, it also protects
the bogus callsites of create_irq_nr() in hpet, uv, irq_remapping and
htirq code. They need to be cleaned up as well, but that's a separate
issue.
Reported-by: Jin Yao <yao.jin@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Cc: Mathias Nyman <mathias.nyman@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Krogerus Heikki <heikki.krogerus@intel.com>
Cc: Linus Walleij <linus.walleij@linaro.org>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1404241617360.28206@ionos.tec.linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We remove the waiting module removal in commit 3f2b9c9cdf (September
2013), but it turns out that modprobe in kmod (< version 16) was
asking for waiting module removal. No one noticed since modprobe would
check for 0 usage immediately before trying to remove the module, and
the race is unlikely.
However, it means that anyone running old (but not ancient) kmod
versions is hitting the printk designed to see if anyone was running
"rmmod -w". All reports so far have been false positives, so remove
the warning.
Fixes: 3f2b9c9cdf
Reported-by: Valerio Vanni <valerio.vanni@inwind.it>
Cc: Elliott, Robert (Server Storage) <Elliott@hp.com>
Cc: stable@kernel.org
Acked-by: Lucas De Marchi <lucas.de.marchi@gmail.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Pull irq fixes from Thomas Gleixner:
"A slighlty large fix for a subtle issue in the CPU hotplug code of
certain ARM SoCs, where the not yet online cpu needs to setup the cpu
local timer and needs to set the interrupt affinity to itself.
Setting interrupt affinity to a not online cpu is prohibited and
therefor the timer interrupt ends up on the wrong cpu, which leads to
nasty complications.
The SoC folks tried to hack around that in the SoC code in some more
than nasty ways. The proper solution is to have a way to enforce the
affinity setting to a not online cpu. The core patch to the genirq
code provides that facility and the follow up patches make use of it
in the GIC interrupt controller and the exynos timer driver.
The change to the core code has no implications to existing users,
except for the rename of the locked function and therefor the
necessary fixup in mips/cavium. Aside of that, no runtime impact is
possible, as none of the existing interrupt chips implements anything
which depends on the force argument of the irq_set_affinity()
callback"
* 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
clocksource: Exynos_mct: Register clock event after request_irq()
clocksource: Exynos_mct: Use irq_force_affinity() in cpu bringup
irqchip: Gic: Support forced affinity setting
genirq: Allow forcing cpu affinity of interrupts
The "freeze" system sleep state introduced by commit 7e73c5ae6e
(PM: Introduce suspend state PM_SUSPEND_FREEZE) requires cpuidle
to be functional when freeze_enter() is executed to work correctly
(that is, to be able to save any more energy than runtime idle),
but that is impossible after commit 8651f97bd9 (PM / cpuidle:
System resume hang fix with cpuidle) which caused cpuidle to be
paused in dpm_suspend_noirq() and resumed in dpm_resume_noirq().
To avoid that problem, add cpuidle_resume() and cpuidle_pause()
to the beginning and the end of freeze_enter(), respectively.
Reported-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Pull more networking fixes from David Miller:
1) Fix mlx4_en_netpoll implementation, it needs to schedule a NAPI
context, not synchronize it. From Chris Mason.
2) Ipv4 flow input interface should never be zero, it should be
LOOPBACK_IFINDEX instead. From Cong Wang and Julian Anastasov.
3) Properly configure MAC to PHY connection in mvneta devices, from
Thomas Petazzoni.
4) sys_recv should use SYSCALL_DEFINE. From Jan Glauber.
5) Tunnel driver ioctls do not use the correct namespace, fix from
Nicolas Dichtel.
6) Fix memory leak on seccomp filter attach, from Kees Cook.
7) Fix lockdep warning for nested vlans, from Ding Tianhong.
8) Crashes can happen in SCTP due to how the auth_enable value is
managed, fix from Vlad Yasevich.
9) Wireless fixes from John W Linville and co.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (45 commits)
net: sctp: cache auth_enable per endpoint
tg3: update rx_jumbo_pending ring param only when jumbo frames are enabled
vlan: Fix lockdep warning when vlan dev handle notification
seccomp: fix memory leak on filter attach
isdn: icn: buffer overflow in icn_command()
ip6_tunnel: use the right netns in ioctl handler
sit: use the right netns in ioctl handler
ip_tunnel: use the right netns in ioctl handler
net: use SYSCALL_DEFINEx for sys_recv
net: mdio-gpio: Add support for separate MDI and MDO gpio pins
net: mdio-gpio: Add support for active low gpio pins
net: mdio-gpio: Use devm_ functions where possible
ipv4, route: pass 0 instead of LOOPBACK_IFINDEX to fib_validate_source()
ipv4, fib: pass LOOPBACK_IFINDEX instead of 0 to flowi4_iif
mlx4_en: don't use napi_synchronize inside mlx4_en_netpoll
net: mvneta: properly configure the MAC <-> PHY connection in all situations
net: phy: add minimal support for QSGMII PHY
sfc:On MCDI timeout, issue an FLR (and mark MCDI to fail-fast)
mwifiex: fix hung task on command timeout
mwifiex: process event before command response
...
Pull tracing fixes from Steven Rostedt:
"This contains two fixes.
The first is to remove a duplication of creating debugfs files that
already exist and causes an error report to be printed due to the
failure of the second creation.
The second is a memory leak fix that was introduced in 3.14"
* tag 'trace-fixes-v3.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
tracing/uprobes: Fix uprobe_cpu_buffer memory leak
tracing: Do not try to recreated toplevel set_ftrace_* files
Pull timer fixes from Thomas Gleixner:
"Viresh unearthed the following three hickups in the timer/timekeeping
code:
- Negated check for the result of a clock event selection
- A missing early exit in the jiffies update path which causes
update_wall_time to be called for nothing causing lock contention
and wasted cycles in the timer interrupt
- Checking a variable in the NOHZ code enable code for true which can
only be set by that very code after the check succeeds. That
results in a rock solid runtime disablement of that feature"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
tick-sched: Check tick_nohz_enabled in tick_nohz_switch_to_nohz()
tick-sched: Don't call update_wall_time() when delta is lesser than tick_period
tick-common: Fix wrong check in tick_check_replacement()
The current implementation of irq_set_affinity() refuses rightfully to
route an interrupt to an offline cpu.
But there is a special case, where this is actually desired. Some of
the ARM SoCs have per cpu timers which require setting the affinity
during cpu startup where the cpu is not yet in the online mask.
If we can't do that, then the local timer interrupt for the about to
become online cpu is routed to some random online cpu.
The developers of the affected machines tried to work around that
issue, but that results in a massive mess in that timer code.
We have a yet unused argument in the set_affinity callbacks of the irq
chips, which I added back then for a similar reason. It was never
required so it got not used. But I'm happy that I never removed it.
That allows us to implement a sane handling of the above scenario. So
the affected SoC drivers can add the required force handling to their
interrupt chip, switch the timer code to irq_force_affinity() and
things just work.
This does not affect any existing user of irq_set_affinity().
Tagged for stable to allow a simple fix of the affected SoC clock
event drivers.
Reported-and-tested-by: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Tomasz Figa <t.figa@samsung.com>,
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>,
Cc: Kukjin Kim <kgene.kim@samsung.com>
Cc: linux-arm-kernel@lists.infradead.org,
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20140416143315.717251504@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
With the restructing of the function tracer working with instances, the
"top level" buffer is a bit special, as the function tracing is mapped
to the same set of filters. This is done by using a "global_ops" descriptor
and having the "set_ftrace_filter" and "set_ftrace_notrace" map to it.
When an instance is created, it creates the same files but its for the
local instance and not the global_ops.
The issues is that the local instance creation shares some code with
the global instance one and we end up trying to create th top level
"set_ftrace_*" files twice, and on boot up, we get an error like this:
Could not create debugfs 'set_ftrace_filter' entry
Could not create debugfs 'set_ftrace_notrace' entry
The reason they failed to be created was because they were created
twice, and the second time gives this error as you can not create the
same file twice.
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>