Commit Graph

129 Commits

Author SHA1 Message Date
Oleg Nesterov
dd98acf747 keyctl_session_to_parent(): use thread_group_empty() to check singlethreadness
No functional changes.

keyctl_session_to_parent() is the only user of signal->count which needs
the correct value.  Change it to use thread_group_empty() instead, this
must be strictly equivalent under tasklist, and imho looks better.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: David Howells <dhowells@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Acked-by: Roland McGrath <roland@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-27 09:12:47 -07:00
Oleg Nesterov
685bfd2c48 umh: creds: convert call_usermodehelper_keys() to use subprocess_info->init()
call_usermodehelper_keys() uses call_usermodehelper_setkeys() to change
subprocess_info->cred in advance.  Now that we have info->init() we can
change this code to set tgcred->session_keyring in context of execing
kernel thread.

Note: since currently call_usermodehelper_keys() is never called with
UMH_NO_WAIT, call_usermodehelper_keys()->key_get() and umh_keys_cleanup()
are not really needed, we could rely on install_session_keyring_to_cred()
which does key_get() on success.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-27 09:12:45 -07:00
Alexey Dobriyan
4be929be34 kernel-wide: replace USHORT_MAX, SHORT_MAX and SHORT_MIN with USHRT_MAX, SHRT_MAX and SHRT_MIN
- C99 knows about USHRT_MAX/SHRT_MAX/SHRT_MIN, not
  USHORT_MAX/SHORT_MAX/SHORT_MIN.

- Make SHRT_MIN of type s16, not int, for consistency.

[akpm@linux-foundation.org: fix drivers/dma/timb_dma.c]
[akpm@linux-foundation.org: fix security/keys/keyring.c]
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25 08:07:02 -07:00
Dan Carpenter
4d09ec0f70 KEYS: Return more accurate error codes
We were using the wrong variable here so the error codes weren't being returned
properly.  The original code returns -ENOKEY.

Signed-off-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-05-18 08:50:55 +10:00
David Howells
f70e2e0619 KEYS: Do preallocation for __key_link()
Do preallocation for __key_link() so that the various callers in request_key.c
can deal with any errors from this source before attempting to construct a key.
This allows them to assume that the actual linkage step is guaranteed to be
successful.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-05-06 22:25:02 +10:00
James Morris
043b4d40f5 Merge branch 'master' into next
Conflicts:
	security/keys/keyring.c

Resolved conflict with whitespace fix in find_keyring_by_name()

Signed-off-by: James Morris <jmorris@namei.org>
2010-05-06 22:21:04 +10:00
David Howells
2b9e4688fa KEYS: Better handling of errors from construct_alloc_key()
Errors from construct_alloc_key() shouldn't just be ignored in the way they are
by construct_key_and_link().  The only error that can be ignored so is
EINPROGRESS as that is used to indicate that we've found a key and don't need
to construct one.

We don't, however, handle ENOMEM, EDQUOT or EACCES to indicate allocation
failures of one sort or another.

Reported-by: Vegard Nossum <vegard.nossum@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-05-06 10:56:55 +10:00
David Howells
553d603c8f KEYS: keyring_serialise_link_sem is only needed for keyring->keyring links
keyring_serialise_link_sem is only needed for keyring->keyring links as it's
used to prevent cycle detection from being avoided by parallel keyring
additions.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-05-06 10:56:52 +10:00
James Morris
0ffbe2699c Merge branch 'master' into next 2010-05-06 10:56:07 +10:00
David Howells
896903c2f5 KEYS: call_sbin_request_key() must write lock keyrings before modifying them
call_sbin_request_key() creates a keyring and then attempts to insert a link to
the authorisation key into that keyring, but does so without holding a write
lock on the keyring semaphore.

It will normally get away with this because it hasn't told anyone that the
keyring exists yet.  The new keyring, however, has had its serial number
published, which means it can be accessed directly by that handle.

This was found by a previous patch that adds RCU lockdep checks to the code
that reads the keyring payload pointer, which includes a check that the keyring
semaphore is actually locked.

Without this patch, the following command:

	keyctl request2 user b a @s

will provoke the following lockdep warning is displayed in dmesg:

	===================================================
	[ INFO: suspicious rcu_dereference_check() usage. ]
	---------------------------------------------------
	security/keys/keyring.c:727 invoked rcu_dereference_check() without protection!

	other info that might help us debug this:

	rcu_scheduler_active = 1, debug_locks = 0
	2 locks held by keyctl/2076:
	 #0:  (key_types_sem){.+.+.+}, at: [<ffffffff811a5b29>] key_type_lookup+0x1c/0x71
	 #1:  (keyring_serialise_link_sem){+.+.+.}, at: [<ffffffff811a6d1e>] __key_link+0x4d/0x3c5

	stack backtrace:
	Pid: 2076, comm: keyctl Not tainted 2.6.34-rc6-cachefs #54
	Call Trace:
	 [<ffffffff81051fdc>] lockdep_rcu_dereference+0xaa/0xb2
	 [<ffffffff811a6d1e>] ? __key_link+0x4d/0x3c5
	 [<ffffffff811a6e6f>] __key_link+0x19e/0x3c5
	 [<ffffffff811a5952>] ? __key_instantiate_and_link+0xb1/0xdc
	 [<ffffffff811a59bf>] ? key_instantiate_and_link+0x42/0x5f
	 [<ffffffff811aa0dc>] call_sbin_request_key+0xe7/0x33b
	 [<ffffffff8139376a>] ? mutex_unlock+0x9/0xb
	 [<ffffffff811a5952>] ? __key_instantiate_and_link+0xb1/0xdc
	 [<ffffffff811a59bf>] ? key_instantiate_and_link+0x42/0x5f
	 [<ffffffff811aa6fa>] ? request_key_auth_new+0x1c2/0x23c
	 [<ffffffff810aaf15>] ? cache_alloc_debugcheck_after+0x108/0x173
	 [<ffffffff811a9d00>] ? request_key_and_link+0x146/0x300
	 [<ffffffff810ac568>] ? kmem_cache_alloc+0xe1/0x118
	 [<ffffffff811a9e45>] request_key_and_link+0x28b/0x300
	 [<ffffffff811a89ac>] sys_request_key+0xf7/0x14a
	 [<ffffffff81052c0b>] ? trace_hardirqs_on_caller+0x10c/0x130
	 [<ffffffff81394fb9>] ? trace_hardirqs_on_thunk+0x3a/0x3f
	 [<ffffffff81001eeb>] system_call_fastpath+0x16/0x1b

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-05-05 23:50:24 +10:00
David Howells
f0641cba77 KEYS: Use RCU dereference wrappers in keyring key type code
The keyring key type code should use RCU dereference wrappers, even when it
holds the keyring's key semaphore.

Reported-by: Vegard Nossum <vegard.nossum@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-05-05 23:50:12 +10:00
Toshiyuki Okajima
cea7daa358 KEYS: find_keyring_by_name() can gain access to a freed keyring
find_keyring_by_name() can gain access to a keyring that has had its reference
count reduced to zero, and is thus ready to be freed.  This then allows the
dead keyring to be brought back into use whilst it is being destroyed.

The following timeline illustrates the process:

|(cleaner)                           (user)
|
| free_user(user)                    sys_keyctl()
|  |                                  |
|  key_put(user->session_keyring)     keyctl_get_keyring_ID()
|  ||	//=> keyring->usage = 0        |
|  |schedule_work(&key_cleanup_task)   lookup_user_key()
|  ||                                   |
|  kmem_cache_free(,user)               |
|  .                                    |[KEY_SPEC_USER_KEYRING]
|  .                                    install_user_keyrings()
|  .                                    ||
| key_cleanup() [<= worker_thread()]    ||
|  |                                    ||
|  [spin_lock(&key_serial_lock)]        |[mutex_lock(&key_user_keyr..mutex)]
|  |                                    ||
|  atomic_read() == 0                   ||
|  |{ rb_ease(&key->serial_node,) }     ||
|  |                                    ||
|  [spin_unlock(&key_serial_lock)]      |find_keyring_by_name()
|  |                                    |||
|  keyring_destroy(keyring)             ||[read_lock(&keyring_name_lock)]
|  ||                                   |||
|  |[write_lock(&keyring_name_lock)]    ||atomic_inc(&keyring->usage)
|  |.                                   ||| *** GET freeing keyring ***
|  |.                                   ||[read_unlock(&keyring_name_lock)]
|  ||                                   ||
|  |list_del()                          |[mutex_unlock(&key_user_k..mutex)]
|  ||                                   |
|  |[write_unlock(&keyring_name_lock)]  ** INVALID keyring is returned **
|  |                                    .
|  kmem_cache_free(,keyring)            .
|                                       .
|                                       atomic_dec(&keyring->usage)
v                                         *** DESTROYED ***
TIME

If CONFIG_SLUB_DEBUG=y then we may see the following message generated:

	=============================================================================
	BUG key_jar: Poison overwritten
	-----------------------------------------------------------------------------

	INFO: 0xffff880197a7e200-0xffff880197a7e200. First byte 0x6a instead of 0x6b
	INFO: Allocated in key_alloc+0x10b/0x35f age=25 cpu=1 pid=5086
	INFO: Freed in key_cleanup+0xd0/0xd5 age=12 cpu=1 pid=10
	INFO: Slab 0xffffea000592cb90 objects=16 used=2 fp=0xffff880197a7e200 flags=0x200000000000c3
	INFO: Object 0xffff880197a7e200 @offset=512 fp=0xffff880197a7e300

	Bytes b4 0xffff880197a7e1f0:  5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZZZZZZZZZ
	  Object 0xffff880197a7e200:  6a 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b jkkkkkkkkkkkkkkk

Alternatively, we may see a system panic happen, such as:

	BUG: unable to handle kernel NULL pointer dereference at 0000000000000001
	IP: [<ffffffff810e61a3>] kmem_cache_alloc+0x5b/0xe9
	PGD 6b2b4067 PUD 6a80d067 PMD 0
	Oops: 0000 [#1] SMP
	last sysfs file: /sys/kernel/kexec_crash_loaded
	CPU 1
	...
	Pid: 31245, comm: su Not tainted 2.6.34-rc5-nofixed-nodebug #2 D2089/PRIMERGY
	RIP: 0010:[<ffffffff810e61a3>]  [<ffffffff810e61a3>] kmem_cache_alloc+0x5b/0xe9
	RSP: 0018:ffff88006af3bd98  EFLAGS: 00010002
	RAX: 0000000000000000 RBX: 0000000000000001 RCX: ffff88007d19900b
	RDX: 0000000100000000 RSI: 00000000000080d0 RDI: ffffffff81828430
	RBP: ffffffff81828430 R08: ffff88000a293750 R09: 0000000000000000
	R10: 0000000000000001 R11: 0000000000100000 R12: 00000000000080d0
	R13: 00000000000080d0 R14: 0000000000000296 R15: ffffffff810f20ce
	FS:  00007f97116bc700(0000) GS:ffff88000a280000(0000) knlGS:0000000000000000
	CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
	CR2: 0000000000000001 CR3: 000000006a91c000 CR4: 00000000000006e0
	DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
	DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
	Process su (pid: 31245, threadinfo ffff88006af3a000, task ffff8800374414c0)
	Stack:
	 0000000512e0958e 0000000000008000 ffff880037f8d180 0000000000000001
	 0000000000000000 0000000000008001 ffff88007d199000 ffffffff810f20ce
	 0000000000008000 ffff88006af3be48 0000000000000024 ffffffff810face3
	Call Trace:
	 [<ffffffff810f20ce>] ? get_empty_filp+0x70/0x12f
	 [<ffffffff810face3>] ? do_filp_open+0x145/0x590
	 [<ffffffff810ce208>] ? tlb_finish_mmu+0x2a/0x33
	 [<ffffffff810ce43c>] ? unmap_region+0xd3/0xe2
	 [<ffffffff810e4393>] ? virt_to_head_page+0x9/0x2d
	 [<ffffffff81103916>] ? alloc_fd+0x69/0x10e
	 [<ffffffff810ef4ed>] ? do_sys_open+0x56/0xfc
	 [<ffffffff81008a02>] ? system_call_fastpath+0x16/0x1b
	Code: 0f 1f 44 00 00 49 89 c6 fa 66 0f 1f 44 00 00 65 4c 8b 04 25 60 e8 00 00 48 8b 45 00 49 01 c0 49 8b 18 48 85 db 74 0d 48 63 45 18 <48> 8b 04 03 49 89 00 eb 14 4c 89 f9 83 ca ff 44 89 e6 48 89 ef
	RIP  [<ffffffff810e61a3>] kmem_cache_alloc+0x5b/0xe9

This problem is that find_keyring_by_name does not confirm that the keyring is
valid before accepting it.

Skipping keyrings that have been reduced to a zero count seems the way to go.
To this end, use atomic_inc_not_zero() to increment the usage count and skip
the candidate keyring if that returns false.

The following script _may_ cause the bug to happen, but there's no guarantee
as the window of opportunity is small:

	#!/bin/sh
	LOOP=100000
	USER=dummy_user
	/bin/su -c "exit;" $USER || { /usr/sbin/adduser -m $USER; add=1; }
	for ((i=0; i<LOOP; i++))
	do
		/bin/su -c "echo '$i' > /dev/null" $USER
	done
	(( add == 1 )) && /usr/sbin/userdel -r $USER
	exit

Note that the nominated user must not be in use.

An alternative way of testing this may be:

	for ((i=0; i<100000; i++))
	do
		keyctl session foo /bin/true || break
	done >&/dev/null

as that uses a keyring named "foo" rather than relying on the user and
user-session named keyrings.

Reported-by: Toshiyuki Okajima <toshi.okajima@jp.fujitsu.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Toshiyuki Okajima <toshi.okajima@jp.fujitsu.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-05-05 23:49:10 +10:00
David Howells
cf8304e8f3 KEYS: Fix RCU handling in key_gc_keyring()
key_gc_keyring() needs to either hold the RCU read lock or hold the keyring
semaphore if it's going to scan the keyring's list.  Given that it only needs
to read the key list, and it's doing so under a spinlock, the RCU read lock is
the thing to use.

Furthermore, the RCU check added in e7b0a61b79 is
incorrect as holding the spinlock on key_serial_lock is not grounds for
assuming a keyring's pointer list can be read safely.  Instead, a simple
rcu_dereference() inside of the previously mentioned RCU read lock is what we
want.

Reported-by: Serge E. Hallyn <serue@us.ibm.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-05-05 11:39:23 +10:00
David Howells
d9a9b4aeea KEYS: Fix an RCU warning in the reading of user keys
Fix an RCU warning in the reading of user keys:

===================================================
[ INFO: suspicious rcu_dereference_check() usage. ]
---------------------------------------------------
security/keys/user_defined.c:202 invoked rcu_dereference_check() without protection!

other info that might help us debug this:

rcu_scheduler_active = 1, debug_locks = 0
1 lock held by keyctl/3637:
 #0:  (&key->sem){+++++.}, at: [<ffffffff811a80ae>] keyctl_read_key+0x9c/0xcf

stack backtrace:
Pid: 3637, comm: keyctl Not tainted 2.6.34-rc5-cachefs #18
Call Trace:
 [<ffffffff81051f6c>] lockdep_rcu_dereference+0xaa/0xb2
 [<ffffffff811aa55f>] user_read+0x47/0x91
 [<ffffffff811a80be>] keyctl_read_key+0xac/0xcf
 [<ffffffff811a8a06>] sys_keyctl+0x75/0xb7
 [<ffffffff81001eeb>] system_call_fastpath+0x16/0x1b

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-05-05 11:38:52 +10:00
Linus Torvalds
1600f9def0 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/security-testing-2.6
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/security-testing-2.6:
  keys: don't need to use RCU in keyring_read() as semaphore is held
2010-04-27 16:26:46 -07:00
David Howells
03449cd9ea keys: the request_key() syscall should link an existing key to the dest keyring
The request_key() system call and request_key_and_link() should make a
link from an existing key to the destination keyring (if supplied), not
just from a new key to the destination keyring.

This can be tested by:

	ring=`keyctl newring fred @s`
	keyctl request2 user debug:a a
	keyctl request user debug:a $ring
	keyctl list $ring

If it says:

	keyring is empty

then it didn't work.  If it shows something like:

	1 key in keyring:
	1070462727: --alswrv     0     0 user: debug:a

then it did.

request_key() system call is meant to recursively search all your keyrings for
the key you desire, and, optionally, if it doesn't exist, call out to userspace
to create one for you.

If request_key() finds or creates a key, it should, optionally, create a link
to that key from the destination keyring specified.

Therefore, if, after a successful call to request_key() with a desination
keyring specified, you see the destination keyring empty, the code didn't work
correctly.

If you see the found key in the keyring, then it did - which is what the patch
is required for.

Signed-off-by: David Howells <dhowells@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-04-27 16:26:03 -07:00
David Howells
b59ec78cdc keys: don't need to use RCU in keyring_read() as semaphore is held
keyring_read() doesn't need to use rcu_dereference() to access the keyring
payload as the caller holds the key semaphore to prevent modifications
from happening whilst the data is read out.

This should solve the following warning:

===================================================
[ INFO: suspicious rcu_dereference_check() usage. ]
---------------------------------------------------
security/keys/keyring.c:204 invoked rcu_dereference_check() without protection!

other info that might help us debug this:

rcu_scheduler_active = 1, debug_locks = 0
1 lock held by keyctl/2144:
 #0:  (&key->sem){+++++.}, at: [<ffffffff81177f7c>] keyctl_read_key+0x9c/0xcf

stack backtrace:
Pid: 2144, comm: keyctl Not tainted 2.6.34-rc2-cachefs #113
Call Trace:
 [<ffffffff8105121f>] lockdep_rcu_dereference+0xaa/0xb2
 [<ffffffff811762d5>] keyring_read+0x4d/0xe7
 [<ffffffff81177f8c>] keyctl_read_key+0xac/0xcf
 [<ffffffff811788d4>] sys_keyctl+0x75/0xb9
 [<ffffffff81001eeb>] system_call_fastpath+0x16/0x1b

Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: James Morris <jmorris@namei.org>
2010-04-28 08:37:15 +10:00
David Howells
93b4a44f3a keys: fix an RCU warning
Fix the following RCU warning:

  ===================================================
  [ INFO: suspicious rcu_dereference_check() usage. ]
  ---------------------------------------------------
  security/keys/request_key.c:116 invoked rcu_dereference_check() without protection!

This was caused by doing:

	[root@andromeda ~]# keyctl newring fred @s
	539196288
	[root@andromeda ~]# keyctl request2 user a a 539196288
	request_key: Required key not available

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-04-24 11:31:25 -07:00
Justin P. Mattock
c5b60b5e67 security: whitespace coding style fixes
Whitespace coding style fixes.

Signed-off-by: Justin P. Mattock <justinmattock@gmail.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-04-23 10:10:23 +10:00
Eric Paris
3011a344cd security: remove dead hook key_session_to_parent
Unused hook.  Remove.

Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-04-12 12:19:18 +10:00
Tejun Heo
5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00
Chihau Chau
512ea3bc30 Security: key: keyring: fix some code style issues
This fixes to include <linux/uaccess.h> instead <asm/uaccess.h> and some
code style issues like to put a else sentence below close brace '}' and
to replace a tab instead of some space characters.

Signed-off-by: Chihau Chau <chihau@gmail.com>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-03-10 08:46:15 +11:00
wzt.wzt@gmail.com
c8563473c1 Security: Fix some coding styles in security/keys/keyring.c
Fix some coding styles in security/keys/keyring.c

Signed-off-by: Zhitong Wang <zhitong.wangzt@alibaba-inc.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-03-05 09:49:02 +11:00
Paul E. McKenney
e7b0a61b79 security: Apply lockdep-based checking to rcu_dereference() uses
Apply lockdep-ified RCU primitives to key_gc_keyring() and
keyring_destroy().

Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1266887105-1528-12-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-25 10:34:52 +01:00
Geert Uytterhoeven
a00ae4d21b Keys: KEYCTL_SESSION_TO_PARENT needs TIF_NOTIFY_RESUME architecture support
As of commit ee18d64c1f ("KEYS: Add a keyctl to
install a process's session keyring on its parent [try #6]"), CONFIG_KEYS=y
fails to build on architectures that haven't implemented TIF_NOTIFY_RESUME yet:

security/keys/keyctl.c: In function 'keyctl_session_to_parent':
security/keys/keyctl.c:1312: error: 'TIF_NOTIFY_RESUME' undeclared (first use in this function)
security/keys/keyctl.c:1312: error: (Each undeclared identifier is reported only once
security/keys/keyctl.c:1312: error: for each function it appears in.)

Make KEYCTL_SESSION_TO_PARENT depend on TIF_NOTIFY_RESUME until
m68k, and xtensa have implemented it.

Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: James Morris <jmorris@namei.org>
Acked-by: Mike Frysinger <vapier@gentoo.org>
2009-12-17 09:27:59 +11:00