Commit Graph

46 Commits

Author SHA1 Message Date
Boaz Harrosh
81ab6e7b26 kmod: convert two call sites to call_usermodehelper_fns()
Both kernel/sys.c && security/keys/request_key.c where inlining the exact
same code as call_usermodehelper_fns(); So simply convert these sites to
directly use call_usermodehelper_fns().

Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-31 17:49:28 -07:00
Oleg Nesterov
9d944ef32e usermodehelper: kill umh_wait, renumber UMH_* constants
No functional changes.  It is not sane to use UMH_KILLABLE with enum
umh_wait, but obviously we do not want another argument in
call_usermodehelper_* helpers.  Kill this enum, use the plain int.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-23 16:58:41 -07:00
David Howells
b1d7dd80aa KEYS: Fix error handling in construct_key_and_link()
Fix error handling in construct_key_and_link().

If construct_alloc_key() returns an error, it shouldn't pass out through
the normal path as the key_serial() called by the kleave() statement
will oops when it gets an error code in the pointer:

  BUG: unable to handle kernel paging request at ffffffffffffff84
  IP: [<ffffffff8120b401>] request_key_and_link+0x4d7/0x52f
  ..
  Call Trace:
   [<ffffffff8120b52c>] request_key+0x41/0x75
   [<ffffffffa00ed6e8>] cifs_get_spnego_key+0x206/0x226 [cifs]
   [<ffffffffa00eb0c9>] CIFS_SessSetup+0x511/0x1234 [cifs]
   [<ffffffffa00d9799>] cifs_setup_session+0x90/0x1ae [cifs]
   [<ffffffffa00d9c02>] cifs_get_smb_ses+0x34b/0x40f [cifs]
   [<ffffffffa00d9e05>] cifs_mount+0x13f/0x504 [cifs]
   [<ffffffffa00caabb>] cifs_do_mount+0xc4/0x672 [cifs]
   [<ffffffff8113ae8c>] mount_fs+0x69/0x155
   [<ffffffff8114ff0e>] vfs_kern_mount+0x63/0xa0
   [<ffffffff81150be2>] do_kern_mount+0x4d/0xdf
   [<ffffffff81152278>] do_mount+0x63c/0x69f
   [<ffffffff8115255c>] sys_mount+0x88/0xc2
   [<ffffffff814fbdc2>] system_call_fastpath+0x16/0x1b

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-21 18:31:45 -07:00
David Howells
879669961b KEYS/DNS: Fix ____call_usermodehelper() to not lose the session keyring
____call_usermodehelper() now erases any credentials set by the
subprocess_inf::init() function.  The problem is that commit
17f60a7da1 ("capabilites: allow the application of capability limits
to usermode helpers") creates and commits new credentials with
prepare_kernel_cred() after the call to the init() function.  This wipes
all keyrings after umh_keys_init() is called.

The best way to deal with this is to put the init() call just prior to
the commit_creds() call, and pass the cred pointer to init().  That
means that umh_keys_init() and suchlike can modify the credentials
_before_ they are published and potentially in use by the rest of the
system.

This prevents request_key() from working as it is prevented from passing
the session keyring it set up with the authorisation token to
/sbin/request-key, and so the latter can't assume the authority to
instantiate the key.  This causes the in-kernel DNS resolver to fail
with ENOKEY unconditionally.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Eric Paris <eparis@redhat.com>
Tested-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-17 09:40:48 -07:00
Linus Torvalds
e52e713ec3 Merge branch 'docs-move' of git://git.kernel.org/pub/scm/linux/kernel/git/rdunlap/linux-docs
* 'docs-move' of git://git.kernel.org/pub/scm/linux/kernel/git/rdunlap/linux-docs:
  Create Documentation/security/, move LSM-, credentials-, and keys-related files from Documentation/   to Documentation/security/, add Documentation/security/00-INDEX, and update all occurrences of Documentation/<moved_file>   to Documentation/security/<moved_file>.
2011-05-27 10:25:02 -07:00
Randy Dunlap
d410fa4ef9 Create Documentation/security/,
move LSM-, credentials-, and keys-related files from Documentation/
  to Documentation/security/,
add Documentation/security/00-INDEX, and
update all occurrences of Documentation/<moved_file>
  to Documentation/security/<moved_file>.
2011-05-19 15:59:38 -07:00
David Howells
78b7280cce KEYS: Improve /proc/keys
Improve /proc/keys by:

 (1) Don't attempt to summarise the payload of a negated key.  It won't have
     one.  To this end, a helper function - key_is_instantiated() has been
     added that allows the caller to find out whether the key is positively
     instantiated (as opposed to being uninstantiated or negatively
     instantiated).

 (2) Do show keys that are negative, expired or revoked rather than hiding
     them.  This requires an override flag (no_state_check) to be passed to
     search_my_process_keyrings() and keyring_search_aux() to suppress this
     check.

     Without this, keys that are possessed by the caller, but only grant
     permissions to the caller if possessed are skipped as the possession check
     fails.

     Keys that are visible due to user, group or other checks are visible with
     or without this patch.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2011-03-17 11:59:32 +11:00
David Howells
fdd1b94581 KEYS: Add a new keyctl op to reject a key with a specified error code
Add a new keyctl op to reject a key with a specified error code.  This works
much the same as negating a key, and so keyctl_negate_key() is made a special
case of keyctl_reject_key().  The difference is that keyctl_negate_key()
selects ENOKEY as the error to be reported.

Typically the key would be rejected with EKEYEXPIRED, EKEYREVOKED or
EKEYREJECTED, but this is not mandatory.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2011-03-08 11:17:18 +11:00
David Howells
ceb73c1204 KEYS: Fix __key_link_end() quota fixup on error
Fix __key_link_end()'s attempt to fix up the quota if an error occurs.

There are two erroneous cases: Firstly, we always decrease the quota if
the preallocated replacement keyring needs cleaning up, irrespective of
whether or not we should (we may have replaced a pointer rather than
adding another pointer).

Secondly, we never clean up the quota if we added a pointer without the
keyring storage being extended (we allocate multiple pointers at a time,
even if we're not going to use them all immediately).

We handle this by setting the bottom bit of the preallocation pointer in
__key_link_begin() to indicate that the quota needs fixing up, which is
then passed to __key_link() (which clears the whole thing) and
__key_link_end().

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-26 08:58:20 +10:00
David Howells
973c9f4f49 KEYS: Fix up comments in key management code
Fix up comments in the key management code.  No functional changes.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-21 14:59:30 -08:00
David Howells
3fc5e98d8c KEYS: Don't call up_write() if __key_link_begin() returns an error
In construct_alloc_key(), up_write() is called in the error path if
__key_link_begin() fails, but this is incorrect as __key_link_begin() only
returns with the nominated keyring locked if it returns successfully.

Without this patch, you might see the following in dmesg:

	=====================================
	[ BUG: bad unlock balance detected! ]
	-------------------------------------
	mount.cifs/5769 is trying to release lock (&key->sem) at:
	[<ffffffff81201159>] request_key_and_link+0x263/0x3fc
	but there are no more locks to release!

	other info that might help us debug this:
	3 locks held by mount.cifs/5769:
	 #0:  (&type->s_umount_key#41/1){+.+.+.}, at: [<ffffffff81131321>] sget+0x278/0x3e7
	 #1:  (&ret_buf->session_mutex){+.+.+.}, at: [<ffffffffa0258e59>] cifs_get_smb_ses+0x35a/0x443 [cifs]
	 #2:  (root_key_user.cons_lock){+.+.+.}, at: [<ffffffff81201000>] request_key_and_link+0x10a/0x3fc

	stack backtrace:
	Pid: 5769, comm: mount.cifs Not tainted 2.6.37-rc6+ #1
	Call Trace:
	 [<ffffffff81201159>] ? request_key_and_link+0x263/0x3fc
	 [<ffffffff81081601>] print_unlock_inbalance_bug+0xca/0xd5
	 [<ffffffff81083248>] lock_release_non_nested+0xc1/0x263
	 [<ffffffff81201159>] ? request_key_and_link+0x263/0x3fc
	 [<ffffffff81201159>] ? request_key_and_link+0x263/0x3fc
	 [<ffffffff81083567>] lock_release+0x17d/0x1a4
	 [<ffffffff81073f45>] up_write+0x23/0x3b
	 [<ffffffff81201159>] request_key_and_link+0x263/0x3fc
	 [<ffffffffa026fe9e>] ? cifs_get_spnego_key+0x61/0x21f [cifs]
	 [<ffffffff812013c5>] request_key+0x41/0x74
	 [<ffffffffa027003d>] cifs_get_spnego_key+0x200/0x21f [cifs]
	 [<ffffffffa026e296>] CIFS_SessSetup+0x55d/0x1273 [cifs]
	 [<ffffffffa02589e1>] cifs_setup_session+0x90/0x1ae [cifs]
	 [<ffffffffa0258e7e>] cifs_get_smb_ses+0x37f/0x443 [cifs]
	 [<ffffffffa025a9e3>] cifs_mount+0x1aa1/0x23f3 [cifs]
	 [<ffffffff8111fd94>] ? alloc_debug_processing+0xdb/0x120
	 [<ffffffffa027002c>] ? cifs_get_spnego_key+0x1ef/0x21f [cifs]
	 [<ffffffffa024cc71>] cifs_do_mount+0x165/0x2b3 [cifs]
	 [<ffffffff81130e72>] vfs_kern_mount+0xaf/0x1dc
	 [<ffffffff81131007>] do_kern_mount+0x4d/0xef
	 [<ffffffff811483b9>] do_mount+0x6f4/0x733
	 [<ffffffff8114861f>] sys_mount+0x88/0xc2
	 [<ffffffff8100ac42>] system_call_fastpath+0x16/0x1b

Reported-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-and-Tested-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-12-23 15:31:48 -08:00
David Howells
1e456a1243 KEYS: request_key() should return -ENOKEY if the constructed key is negative
request_key() should return -ENOKEY if the key it constructs has been
negatively instantiated.

Without this, request_key() can return an unusable key to its caller,
and if the caller then does key_validate() that won't catch the problem.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-06 09:17:02 -07:00
Justin P. Mattock
5ad18a0d59 KEYS: Reinstate lost passing of process keyring ID in call_sbin_request_key()
In commit bb952bb98a there was the accidental
deletion of a statement from call_sbin_request_key() to render the process
keyring ID to a text string so that it can be passed to /sbin/request-key.

With gcc 4.6.0 this causes the following warning:

  CC      security/keys/request_key.o
security/keys/request_key.c: In function 'call_sbin_request_key':
security/keys/request_key.c:102:15: warning: variable 'prkey' set but not used

This patch reinstates that statement.

Without this statement, /sbin/request-key will get some random rubbish from the
stack as that parameter.

Signed-off-by: Justin P. Mattock <justinmattock@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-08-02 15:34:56 +10:00
Oleg Nesterov
685bfd2c48 umh: creds: convert call_usermodehelper_keys() to use subprocess_info->init()
call_usermodehelper_keys() uses call_usermodehelper_setkeys() to change
subprocess_info->cred in advance.  Now that we have info->init() we can
change this code to set tgcred->session_keyring in context of execing
kernel thread.

Note: since currently call_usermodehelper_keys() is never called with
UMH_NO_WAIT, call_usermodehelper_keys()->key_get() and umh_keys_cleanup()
are not really needed, we could rely on install_session_keyring_to_cred()
which does key_get() on success.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-27 09:12:45 -07:00
David Howells
f70e2e0619 KEYS: Do preallocation for __key_link()
Do preallocation for __key_link() so that the various callers in request_key.c
can deal with any errors from this source before attempting to construct a key.
This allows them to assume that the actual linkage step is guaranteed to be
successful.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-05-06 22:25:02 +10:00
James Morris
043b4d40f5 Merge branch 'master' into next
Conflicts:
	security/keys/keyring.c

Resolved conflict with whitespace fix in find_keyring_by_name()

Signed-off-by: James Morris <jmorris@namei.org>
2010-05-06 22:21:04 +10:00
David Howells
2b9e4688fa KEYS: Better handling of errors from construct_alloc_key()
Errors from construct_alloc_key() shouldn't just be ignored in the way they are
by construct_key_and_link().  The only error that can be ignored so is
EINPROGRESS as that is used to indicate that we've found a key and don't need
to construct one.

We don't, however, handle ENOMEM, EDQUOT or EACCES to indicate allocation
failures of one sort or another.

Reported-by: Vegard Nossum <vegard.nossum@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-05-06 10:56:55 +10:00
David Howells
896903c2f5 KEYS: call_sbin_request_key() must write lock keyrings before modifying them
call_sbin_request_key() creates a keyring and then attempts to insert a link to
the authorisation key into that keyring, but does so without holding a write
lock on the keyring semaphore.

It will normally get away with this because it hasn't told anyone that the
keyring exists yet.  The new keyring, however, has had its serial number
published, which means it can be accessed directly by that handle.

This was found by a previous patch that adds RCU lockdep checks to the code
that reads the keyring payload pointer, which includes a check that the keyring
semaphore is actually locked.

Without this patch, the following command:

	keyctl request2 user b a @s

will provoke the following lockdep warning is displayed in dmesg:

	===================================================
	[ INFO: suspicious rcu_dereference_check() usage. ]
	---------------------------------------------------
	security/keys/keyring.c:727 invoked rcu_dereference_check() without protection!

	other info that might help us debug this:

	rcu_scheduler_active = 1, debug_locks = 0
	2 locks held by keyctl/2076:
	 #0:  (key_types_sem){.+.+.+}, at: [<ffffffff811a5b29>] key_type_lookup+0x1c/0x71
	 #1:  (keyring_serialise_link_sem){+.+.+.}, at: [<ffffffff811a6d1e>] __key_link+0x4d/0x3c5

	stack backtrace:
	Pid: 2076, comm: keyctl Not tainted 2.6.34-rc6-cachefs #54
	Call Trace:
	 [<ffffffff81051fdc>] lockdep_rcu_dereference+0xaa/0xb2
	 [<ffffffff811a6d1e>] ? __key_link+0x4d/0x3c5
	 [<ffffffff811a6e6f>] __key_link+0x19e/0x3c5
	 [<ffffffff811a5952>] ? __key_instantiate_and_link+0xb1/0xdc
	 [<ffffffff811a59bf>] ? key_instantiate_and_link+0x42/0x5f
	 [<ffffffff811aa0dc>] call_sbin_request_key+0xe7/0x33b
	 [<ffffffff8139376a>] ? mutex_unlock+0x9/0xb
	 [<ffffffff811a5952>] ? __key_instantiate_and_link+0xb1/0xdc
	 [<ffffffff811a59bf>] ? key_instantiate_and_link+0x42/0x5f
	 [<ffffffff811aa6fa>] ? request_key_auth_new+0x1c2/0x23c
	 [<ffffffff810aaf15>] ? cache_alloc_debugcheck_after+0x108/0x173
	 [<ffffffff811a9d00>] ? request_key_and_link+0x146/0x300
	 [<ffffffff810ac568>] ? kmem_cache_alloc+0xe1/0x118
	 [<ffffffff811a9e45>] request_key_and_link+0x28b/0x300
	 [<ffffffff811a89ac>] sys_request_key+0xf7/0x14a
	 [<ffffffff81052c0b>] ? trace_hardirqs_on_caller+0x10c/0x130
	 [<ffffffff81394fb9>] ? trace_hardirqs_on_thunk+0x3a/0x3f
	 [<ffffffff81001eeb>] system_call_fastpath+0x16/0x1b

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-05-05 23:50:24 +10:00
David Howells
03449cd9ea keys: the request_key() syscall should link an existing key to the dest keyring
The request_key() system call and request_key_and_link() should make a
link from an existing key to the destination keyring (if supplied), not
just from a new key to the destination keyring.

This can be tested by:

	ring=`keyctl newring fred @s`
	keyctl request2 user debug:a a
	keyctl request user debug:a $ring
	keyctl list $ring

If it says:

	keyring is empty

then it didn't work.  If it shows something like:

	1 key in keyring:
	1070462727: --alswrv     0     0 user: debug:a

then it did.

request_key() system call is meant to recursively search all your keyrings for
the key you desire, and, optionally, if it doesn't exist, call out to userspace
to create one for you.

If request_key() finds or creates a key, it should, optionally, create a link
to that key from the destination keyring specified.

Therefore, if, after a successful call to request_key() with a desination
keyring specified, you see the destination keyring empty, the code didn't work
correctly.

If you see the found key in the keyring, then it did - which is what the patch
is required for.

Signed-off-by: David Howells <dhowells@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-04-27 16:26:03 -07:00
David Howells
93b4a44f3a keys: fix an RCU warning
Fix the following RCU warning:

  ===================================================
  [ INFO: suspicious rcu_dereference_check() usage. ]
  ---------------------------------------------------
  security/keys/request_key.c:116 invoked rcu_dereference_check() without protection!

This was caused by doing:

	[root@andromeda ~]# keyctl newring fred @s
	539196288
	[root@andromeda ~]# keyctl request2 user a a 539196288
	request_key: Required key not available

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-04-24 11:31:25 -07:00
David Howells
34574dd10b keys: Handle there being no fallback destination keyring for request_key()
When request_key() is called, without there being any standard process
keyrings on which to fall back if a destination keyring is not specified, an
oops is liable to occur when construct_alloc_key() calls down_write() on
dest_keyring's semaphore.

Due to function inlining this may be seen as an oops in down_write() as called
from request_key_and_link().

This situation crops up during boot, where request_key() is called from within
the kernel (such as in CIFS mounts) where nobody is actually logged in, and so
PAM has not had a chance to create a session keyring and user keyrings to act
as the fallback.

To fix this, make construct_alloc_key() not attempt to cache a key if there is
no fallback key if no destination keyring is given specifically.

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-09 10:41:19 -07:00
Serge E. Hallyn
1d1e97562e keys: distinguish per-uid keys in different namespaces
per-uid keys were looked by uid only.  Use the user namespace
to distinguish the same uid in different namespaces.

This does not address key_permission.  So a task can for instance
try to join a keyring owned by the same uid in another namespace.
That will be handled by a separate patch.

Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-02-27 12:35:06 +11:00
David Howells
d84f4f992c CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management.  This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.

A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().

With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:

	struct cred *new = prepare_creds();
	int ret = blah(new);
	if (ret < 0) {
		abort_creds(new);
		return ret;
	}
	return commit_creds(new);

There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.

To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const.  The purpose of this is compile-time
discouragement of altering credentials through those pointers.  Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:

  (1) Its reference count may incremented and decremented.

  (2) The keyrings to which it points may be modified, but not replaced.

The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).

This patch and the preceding patches have been tested with the LTP SELinux
testsuite.

This patch makes several logical sets of alteration:

 (1) execve().

     This now prepares and commits credentials in various places in the
     security code rather than altering the current creds directly.

 (2) Temporary credential overrides.

     do_coredump() and sys_faccessat() now prepare their own credentials and
     temporarily override the ones currently on the acting thread, whilst
     preventing interference from other threads by holding cred_replace_mutex
     on the thread being dumped.

     This will be replaced in a future patch by something that hands down the
     credentials directly to the functions being called, rather than altering
     the task's objective credentials.

 (3) LSM interface.

     A number of functions have been changed, added or removed:

     (*) security_capset_check(), ->capset_check()
     (*) security_capset_set(), ->capset_set()

     	 Removed in favour of security_capset().

     (*) security_capset(), ->capset()

     	 New.  This is passed a pointer to the new creds, a pointer to the old
     	 creds and the proposed capability sets.  It should fill in the new
     	 creds or return an error.  All pointers, barring the pointer to the
     	 new creds, are now const.

     (*) security_bprm_apply_creds(), ->bprm_apply_creds()

     	 Changed; now returns a value, which will cause the process to be
     	 killed if it's an error.

     (*) security_task_alloc(), ->task_alloc_security()

     	 Removed in favour of security_prepare_creds().

     (*) security_cred_free(), ->cred_free()

     	 New.  Free security data attached to cred->security.

     (*) security_prepare_creds(), ->cred_prepare()

     	 New. Duplicate any security data attached to cred->security.

     (*) security_commit_creds(), ->cred_commit()

     	 New. Apply any security effects for the upcoming installation of new
     	 security by commit_creds().

     (*) security_task_post_setuid(), ->task_post_setuid()

     	 Removed in favour of security_task_fix_setuid().

     (*) security_task_fix_setuid(), ->task_fix_setuid()

     	 Fix up the proposed new credentials for setuid().  This is used by
     	 cap_set_fix_setuid() to implicitly adjust capabilities in line with
     	 setuid() changes.  Changes are made to the new credentials, rather
     	 than the task itself as in security_task_post_setuid().

     (*) security_task_reparent_to_init(), ->task_reparent_to_init()

     	 Removed.  Instead the task being reparented to init is referred
     	 directly to init's credentials.

	 NOTE!  This results in the loss of some state: SELinux's osid no
	 longer records the sid of the thread that forked it.

     (*) security_key_alloc(), ->key_alloc()
     (*) security_key_permission(), ->key_permission()

     	 Changed.  These now take cred pointers rather than task pointers to
     	 refer to the security context.

 (4) sys_capset().

     This has been simplified and uses less locking.  The LSM functions it
     calls have been merged.

 (5) reparent_to_kthreadd().

     This gives the current thread the same credentials as init by simply using
     commit_thread() to point that way.

 (6) __sigqueue_alloc() and switch_uid()

     __sigqueue_alloc() can't stop the target task from changing its creds
     beneath it, so this function gets a reference to the currently applicable
     user_struct which it then passes into the sigqueue struct it returns if
     successful.

     switch_uid() is now called from commit_creds(), and possibly should be
     folded into that.  commit_creds() should take care of protecting
     __sigqueue_alloc().

 (7) [sg]et[ug]id() and co and [sg]et_current_groups.

     The set functions now all use prepare_creds(), commit_creds() and
     abort_creds() to build and check a new set of credentials before applying
     it.

     security_task_set[ug]id() is called inside the prepared section.  This
     guarantees that nothing else will affect the creds until we've finished.

     The calling of set_dumpable() has been moved into commit_creds().

     Much of the functionality of set_user() has been moved into
     commit_creds().

     The get functions all simply access the data directly.

 (8) security_task_prctl() and cap_task_prctl().

     security_task_prctl() has been modified to return -ENOSYS if it doesn't
     want to handle a function, or otherwise return the return value directly
     rather than through an argument.

     Additionally, cap_task_prctl() now prepares a new set of credentials, even
     if it doesn't end up using it.

 (9) Keyrings.

     A number of changes have been made to the keyrings code:

     (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
     	 all been dropped and built in to the credentials functions directly.
     	 They may want separating out again later.

     (b) key_alloc() and search_process_keyrings() now take a cred pointer
     	 rather than a task pointer to specify the security context.

     (c) copy_creds() gives a new thread within the same thread group a new
     	 thread keyring if its parent had one, otherwise it discards the thread
     	 keyring.

     (d) The authorisation key now points directly to the credentials to extend
     	 the search into rather pointing to the task that carries them.

     (e) Installing thread, process or session keyrings causes a new set of
     	 credentials to be created, even though it's not strictly necessary for
     	 process or session keyrings (they're shared).

(10) Usermode helper.

     The usermode helper code now carries a cred struct pointer in its
     subprocess_info struct instead of a new session keyring pointer.  This set
     of credentials is derived from init_cred and installed on the new process
     after it has been cloned.

     call_usermodehelper_setup() allocates the new credentials and
     call_usermodehelper_freeinfo() discards them if they haven't been used.  A
     special cred function (prepare_usermodeinfo_creds()) is provided
     specifically for call_usermodehelper_setup() to call.

     call_usermodehelper_setkeys() adjusts the credentials to sport the
     supplied keyring as the new session keyring.

(11) SELinux.

     SELinux has a number of changes, in addition to those to support the LSM
     interface changes mentioned above:

     (a) selinux_setprocattr() no longer does its check for whether the
     	 current ptracer can access processes with the new SID inside the lock
     	 that covers getting the ptracer's SID.  Whilst this lock ensures that
     	 the check is done with the ptracer pinned, the result is only valid
     	 until the lock is released, so there's no point doing it inside the
     	 lock.

(12) is_single_threaded().

     This function has been extracted from selinux_setprocattr() and put into
     a file of its own in the lib/ directory as join_session_keyring() now
     wants to use it too.

     The code in SELinux just checked to see whether a task shared mm_structs
     with other tasks (CLONE_VM), but that isn't good enough.  We really want
     to know if they're part of the same thread group (CLONE_THREAD).

(13) nfsd.

     The NFS server daemon now has to use the COW credentials to set the
     credentials it is going to use.  It really needs to pass the credentials
     down to the functions it calls, but it can't do that until other patches
     in this series have been applied.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:23 +11:00
David Howells
bb952bb98a CRED: Separate per-task-group keyrings from signal_struct
Separate per-task-group keyrings from signal_struct and dangle their anchor
from the cred struct rather than the signal_struct.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:20 +11:00
David Howells
86a264abe5 CRED: Wrap current->cred and a few other accessors
Wrap current->cred and a few other accessors to hide their actual
implementation.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:18 +11:00