Use of "unsigned int" is preferred to bare "unsigned" in net tree.
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch rearranges the order of statements of the slow-path input processing
(i.e. any other state than OPEN), to resolve the following issues.
1. Dependencies: the order of statements now better matches RFC 4340, 8.5, i.e.
step 7 is before step 9 (previously 9 was before 7), and parsing options in
step 8 (which may consume resources) now comes after step 7.
2. Sequence number checks are omitted if in state LISTEN/REQUEST, due to the
note underneath the table in RFC 4340, 7.5.3.
As a result, CCID processing is now indeed confined to OPEN/PARTOPEN states,
i.e. congestion control is performed only on the flow of data packets. This
avoids pathological cases of doing congestion control on those messages
which set up and terminate the connection.
3. Packets are now passed on to Ack Vector / CCID processing only after
- step 7 (receive unexpected packets),
- step 9 (receive Reset),
- step 13 (receive CloseReq),
- step 14 (receive Close)
and only if the state is PARTOPEN. This simplifies CCID processing:
- in LISTEN/CLOSED the CCIDs are non-existent;
- in RESPOND/REQUEST the CCIDs have not yet been negotiated;
- in CLOSEREQ and active-CLOSING the node has already closed this socket;
- in passive-CLOSING the client is waiting for its Reset.
In the last case, RFC 4340, 8.3 leaves it open to ignore further incoming
data, which is the approach taken here.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
This fixes a bug in the order of dccp_rcv_state_process() that still permitted
reception even after closing the socket. A Reset after close thus causes a NULL
pointer dereference by not preventing operations on an already torn-down socket.
dccp_v4_do_rcv()
|
| state other than OPEN
v
dccp_rcv_state_process()
|
| DCCP_PKT_RESET
v
dccp_rcv_reset()
|
v
dccp_time_wait()
WARNING: at net/ipv4/inet_timewait_sock.c:141 __inet_twsk_hashdance+0x48/0x128()
Modules linked in: arc4 ecb carl9170 rt2870sta(C) mac80211 r8712u(C) crc_ccitt ah
[<c0038850>] (unwind_backtrace+0x0/0xec) from [<c0055364>] (warn_slowpath_common)
[<c0055364>] (warn_slowpath_common+0x4c/0x64) from [<c0055398>] (warn_slowpath_n)
[<c0055398>] (warn_slowpath_null+0x1c/0x24) from [<c02b72d0>] (__inet_twsk_hashd)
[<c02b72d0>] (__inet_twsk_hashdance+0x48/0x128) from [<c031caa0>] (dccp_time_wai)
[<c031caa0>] (dccp_time_wait+0x40/0xc8) from [<c031c15c>] (dccp_rcv_state_proces)
[<c031c15c>] (dccp_rcv_state_process+0x120/0x538) from [<c032609c>] (dccp_v4_do_)
[<c032609c>] (dccp_v4_do_rcv+0x11c/0x14c) from [<c0286594>] (release_sock+0xac/0)
[<c0286594>] (release_sock+0xac/0x110) from [<c031fd34>] (dccp_close+0x28c/0x380)
[<c031fd34>] (dccp_close+0x28c/0x380) from [<c02d9a78>] (inet_release+0x64/0x70)
The fix is by testing the socket state first. Receiving a packet in Closed state
now also produces the required "No connection" Reset reply of RFC 4340, 8.3.1.
Reported-and-tested-by: Johan Hovold <jhovold@gmail.com>
Cc: stable@kernel.org
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently dccp_check_seqno returns 0 (indicating a valid packet) if the
acknowledgment number is out of bounds and the sync that RFC 4340 mandates at
this point is currently being rate-limited. This function should return -1,
indicating an invalid packet.
Signed-off-by: Samuel Jero <sj323707@ohio.edu>
Acked-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
This fixes a bug in updating the Greatest Acknowledgment number Received (GAR):
the current implementation does not track the greatest received value -
lower values in the range AWL..AWH (RFC 4340, 7.5.1) erase higher ones.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
This aggregates Ack Vector processing (handling input and clearing old state)
into one function, for the following reasons and benefits:
* all Ack Vector-specific processing is now in one place;
* duplicated code is removed;
* ensuring sanity: from an Ack Vector point of view, it is better to clear the
old state first before entering new state;
* Ack Event handling happens mostly within the CCIDs, not the main DCCP module.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
This provides a routine to consistently update the buffer state when the
peer acknowledges receipt of Ack Vectors; updating state in the list of Ack
Vectors as well as in the circular buffer.
While based on RFC 4340, several additional (and necessary) precautions were
added to protect the consistency of the buffer state. These additions are
essential, since analysis and experience showed that the basic algorithm was
insufficient for this task (which lead to problems that were hard to debug).
The algorithm now
* deals with HC-sender acknowledging to HC-receiver and vice versa,
* keeps track of the last unacknowledged but received seqno in tail_ackno,
* has special cases to reset the overflow condition when appropriate,
* is protected against receiving older information (would mess up buffer state).
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
This patch brings the Ack Vector interface up to date. Its main purpose is
to lay the basis for the subsequent patches of this set, which will use the
new data structure fields and routines.
There are no real algorithmic changes, rather an adaptation:
(1) Replaced the static Ack Vector size (2) with a #define so that it can
be adapted (with low loss / Ack Ratio, a value of 1 works, so 2 seems
to be sufficient for the moment) and added a solution so that computing
the ECN nonce will continue to work - even with larger Ack Vectors.
(2) Replaced the #defines for Ack Vector states with a complete enum.
(3) Replaced #defines to compute Ack Vector length and state with general
purpose routines (inlines), and updated code to use these.
(4) Added a `tail' field (conversion to circular buffer in subsequent patch).
(5) Updated the (outdated) documentation for Ack Vector struct.
(6) All sequence number containers now trimmed to 48 bits.
(7) Removal of unused bits:
* removed dccpav_ack_nonce from struct dccp_ackvec, since this is already
redundantly stored in the `dccpavr_ack_nonce' (of Ack Vector record);
* removed Elapsed Time for Ack Vectors (it was nowhere used);
* replaced semantics of dccpavr_sent_len with dccpavr_ack_runlen, since
the code needs to be able to remember the old run length;
* reduced the de-/allocation routines (redundant / duplicate tests).
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
This omits the redundant "DCCP:" in warning messages, since DCCP_WARN() already
echoes the function name, avoiding messages like
kernel: [10988.766503] dccp_close: DCCP: ABORT -- 209 bytes unread
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
This fixes a problem and a potential loophole with regard to seqno/ackno
validity: currently the initial adjustments to AWL/SWL are only performed
once at the begin of the connection, during the handshake.
Since the Sequence Window feature is always greater than Wmin=32 (7.5.2),
it is however necessary to perform these adjustments at least for the first
W/W' (variables as per 7.5.1) packets in the lifetime of a connection.
This requirement is complicated by the fact that W/W' can change at any time
during the lifetime of a connection.
Therefore it is better to perform that safety check each time SWL/AWL are
updated, as implemented by the patch.
A second problem solved by this patch is that the remote/local Sequence Window
feature values (which set the bounds for AWL/SWL/SWH) are undefined until the
feature negotiation has completed.
During the initial handshake we have more stringent sequence number protection;
the changes added by this patch effect that {A,S}W{L,H} are within the correct
bounds at the instant that feature negotiation completes (since the SeqWin
feature activation handlers call dccp_update_gsr/gss()).
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
This patch is thanks to Andre Noll who reported the issue and helped testing.
The Syn-RTT sampled during the initial handshake currently only works for
the client sending the DCCP-Request. TFRC penalizes the absence of an RTT
sample with a very slow initial speed (1 packet per second), which delays
slow-start significantly, resulting in sluggish performance.
This patch mirrors the "Syn RTT" principle by adding a timestamp also onto
the DCCP-Response, producing an RTT sample when the (Data)Ack completing
the handshake arrives.
Also changed the documentation to 'TFRC' since Syn RTTs are also used by CCID-4.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
Because MIPS's EDQUOT value is 1133(0x46d).
It's larger than u8.
Signed-off-by: Yoichi Yuasa <yuasa@linux-mips.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
This patch integrates the TFRC library, which is a dependency of CCID-3 (and
CCID-4), with the new use of CCIDs in the DCCP module.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
This removes the use of the sysctl and the minisock variable for the Send Ack
Vector feature, as it now is handled fully dynamically via feature negotiation
(i.e. when CCID-2 is enabled, Ack Vectors are automatically enabled as per
RFC 4341, 4.).
Using a sysctl in parallel to this implementation would open the door to
crashes, since much of the code relies on tests of the boolean minisock /
sysctl variable. Thus, this patch replaces all tests of type
if (dccp_msk(sk)->dccpms_send_ack_vector)
/* ... */
with
if (dp->dccps_hc_rx_ackvec != NULL)
/* ... */
The dccps_hc_rx_ackvec is allocated by the dccp_hdlr_ackvec() when feature
negotiation concluded that Ack Vectors are to be used on the half-connection.
Otherwise, it is NULL (due to dccp_init_sock/dccp_create_openreq_child),
so that the test is a valid one.
The activation handler for Ack Vectors is called as soon as the feature
negotiation has concluded at the
* server when the Ack marking the transition RESPOND => OPEN arrives;
* client after it has sent its ACK, marking the transition REQUEST => PARTOPEN.
Adding the sequence number of the Response packet to the Ack Vector has been
removed, since
(a) connection establishment implies that the Response has been received;
(b) the CCIDs only look at packets received in the (PART)OPEN state, i.e.
this entry will always be ignored;
(c) it can not be used for anything useful - to detect loss for instance, only
packets received after the loss can serve as pseudo-dupacks.
There was a FIXME to change the error code when dccp_ackvec_add() fails.
I removed this after finding out that:
* the check whether ackno < ISN is already made earlier,
* this Response is likely the 1st packet with an Ackno that the client gets,
* so when dccp_ackvec_add() fails, the reason is likely not a packet error.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Acked-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: David S. Miller <davem@davemloft.net>
This integrates feature-activation in the client:
1. When dccp_parse_options() fails, the reset code is already set; request_sent\
_state_process() currently overrides this with `Packet Error', which is not
intended - changed to use the reset code supplied by dccp_parse_options().
2. When feature negotiation fails, the socket should be marked as not usable,
so that the application is notified that an error occurred. This is achieved
by a new label 'unable_to_proceed': generating an error code of `Aborted',
setting the socket state to CLOSED, returning with ECOMM in sk_err.
3. Avoids parsing the Ack twice in Respond state by not doing option processing
again in dccp_rcv_respond_partopen_state_process (as option processing has
already been done on the request_sock in dccp_check_req).
Since this addresses congestion-control initialisation, a corresponding
FIXME has been removed.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Acked-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: David S. Miller <davem@davemloft.net>
This provides feature-negotiation initialisation for both DCCP sockets
and DCCP request_sockets, to support feature negotiation during
connection setup.
It also resolves a FIXME regarding the congestion control
initialisation.
Thanks to Wei Yongjun for help with the IPv6 side of this patch.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Acked-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: David S. Miller <davem@davemloft.net>
This extracts the clamping part of dccp_sample_rtt() and makes it available
to other parts of the code (as e.g. used in the next patch).
Note: The function dccp_sample_rtt() now reduces to subtracting the elapsed
time. This could be eliminated but would require shorter prefixes and thus
is not done by this patch - maybe an idea for later.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
This patch rearranges the order of statements of the slow-path input processing
(i.e. any other state than OPEN), to resolve the following issues.
1. Dependencies: the order of statements now better matches RFC 4340, 8.5, i.e.
step 7 is before step 9 (previously 9 was before 7), and parsing options in
step 8 (which can consume resources) now comes after step 7.
2. Bug-fix: in state CLOSED, there should not be any sequence number checking
or option processing. This is why the test for CLOSED has been moved after
the test for LISTEN.
3. As before sequence number checks are omitted if in state LISTEN/REQUEST, due
to the note underneath the table in RFC 4340, 7.5.3.
4. Packets are now passed on to Ack Vector / CCID processing only after
- step 7 (receive unexpected packets),
- step 9 (receive Reset),
- step 13 (receive CloseReq),
- step 14 (receive Close)
and only if the state is PARTOPEN. This simplifies CCID processing:
- in LISTEN/CLOSED the CCIDs are non-existent;
- in RESPOND/REQUEST the CCIDs have not yet been negotiated;
- in CLOSEREQ and active-CLOSING the node has already closed this socket;
- in passive-CLOSING the client is waiting for its Reset.
In the last case, RFC 4340, 8.3 leaves it open to ignore further incoming
data, which is the approach taken here.
As a result of (3), CCID processing is now indeed confined to OPEN/PARTOPEN
states, i.e. congestion control is performed only on the flow of data packets.
This avoids pathological cases of doing congestion control on those messages
which set up and terminate the connection.
I have done a few checks to see if this creates a problem in other parts of
the code. This seems not to be the case; even if there were one, it would be
better to fix it than to perform congestion control on Close/Request/Response
messages. Similarly for Ack Vectors (as they depend on the negotiated CCID).
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
This aggregates Ack Vector processing (handling input and clearing old state)
into one function, for the following reasons and benefits:
* all Ack Vector-specific processing is now in one place;
* duplicated code is removed;
* ensuring sanity: from an Ack Vector point of view, it is better to clear the
old state first before entering new state;
* Ack Event handling happens mostly within the CCIDs, not the main DCCP module.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
This provides a routine to consistently update the buffer state when the
peer acknowledges receipt of Ack Vectors; updating state in the list of Ack
Vectors as well as in the circular buffer.
While based on RFC 4340, several additional (and necessary) precautions were
added to protect the consistency of the buffer state. These additions are
essential, since analysis and experience showed that the basic algorithm was
insufficient for this task (which lead to problems that were hard to debug).
The algorithm now
* deals with HC-sender acknowledging to HC-receiver and vice versa,
* keeps track of the last unacknowledged but received seqno in tail_ackno,
* has special cases to reset the overflow condition when appropriate,
* is protected against receiving older information (would mess up buffer state).
Note: The older code performed an unnecessary step, where the sender cleared
Ack Vector state by parsing the Ack Vector received by the HC-receiver. Doing
this was entirely redundant, since
* the receiver always puts the full acknowledgment window (groups 2,3 in 11.4.2)
into the Ack Vectors it sends; hence the HC-receiver is only interested in the
highest state that the HC-sender received;
* this means that the acknowledgment number on the (Data)Ack from the HC-sender
is sufficient; and work done in parsing earlier state is not necessary, since
the later state subsumes the earlier one (see also RFC 4340, A.4).
This older interface (dccp_ackvec_parse()) is therefore removed.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>