Sort records by ip locations of the ftrace mcount calls on each of the
set of pages in the function list. This helps in localizing cache
usuage when updating the function locations, as well as gives us
the ability to quickly find an ip location in the list.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
As new functions come in to be initalized from mcount to nop,
they are done by groups of pages. Whether it is the core kernel
or a module. There's no need to keep track of these on a per record
basis.
At startup, and as any module is loaded, the functions to be
traced are stored in a group of pages and added to the function
list at the end. We just need to keep a pointer to the first
page of the list that was added, and use that to know where to
start on the list for initializing functions.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Allocate the mcount record pages as a group of pages as big
as can be allocated and waste no more than a single page.
Grouping the mcount pages as much as possible helps with cache
locality, as we do not need to redirect with descriptors as we
cross from page to page. It also allows us to do more with the
records later on (sort them with bigger benefits).
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Records that are added to the function trace table are
permanently there, except for modules. By separating out the
modules to their own pages that can be freed in one shot
we can remove the "freed" flag and simplify some of the record
management.
Another benefit of doing this is that we can also move the
records around; sort them.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The stop machine method to modify all functions in the kernel
(some 20,000 of them) is the safest way to do so across all archs.
But some archs may not need this big hammer approach to modify code
on SMP machines, and can simply just update the code it needs.
Adding a weak function arch_ftrace_update_code() that now does the
stop machine, will also let any arch override this method.
If the arch needs to check the system and then decide if it can
avoid stop machine, it can still call ftrace_run_stop_machine() to
use the old method.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Multiple users of the function tracer can register their functions
with the ftrace_ops structure. The accounting within ftrace will
update the counter on each function record that is being traced.
When the ftrace_ops filtering adds or removes functions, the
function records will be updated accordingly if the ftrace_ops is
still registered.
When a ftrace_ops is removed, the counter of the function records,
that the ftrace_ops traces, are decremented. When they reach zero
the functions that they represent are modified to stop calling the
mcount code.
When changes are made, the code is updated via stop_machine() with
a command passed to the function to tell it what to do. There is an
ENABLE and DISABLE command that tells the called function to enable
or disable the functions. But the ENABLE is really a misnomer as it
should just update the records, as records that have been enabled
and now have a count of zero should be disabled.
The DISABLE command is used to disable all functions regardless of
their counter values. This is the big off switch and is not the
complement of the ENABLE command.
To make matters worse, when a ftrace_ops is unregistered and there
is another ftrace_ops registered, neither the DISABLE nor the
ENABLE command are set when calling into the stop_machine() function
and the records will not be updated to match their counter. A command
is passed to that function that will update the mcount code to call
the registered callback directly if it is the only one left. This
means that the ftrace_ops that is still registered will have its callback
called by all functions that have been set for it as well as the ftrace_ops
that was just unregistered.
Here's a way to trigger this bug. Compile the kernel with
CONFIG_FUNCTION_PROFILER set and with CONFIG_FUNCTION_GRAPH not set:
CONFIG_FUNCTION_PROFILER=y
# CONFIG_FUNCTION_GRAPH is not set
This will force the function profiler to use the function tracer instead
of the function graph tracer.
# cd /sys/kernel/debug/tracing
# echo schedule > set_ftrace_filter
# echo function > current_tracer
# cat set_ftrace_filter
schedule
# cat trace
# tracer: nop
#
# entries-in-buffer/entries-written: 692/68108025 #P:4
#
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| / delay
# TASK-PID CPU# |||| TIMESTAMP FUNCTION
# | | | |||| | |
kworker/0:2-909 [000] .... 531.235574: schedule <-worker_thread
<idle>-0 [001] .N.. 531.235575: schedule <-cpu_idle
kworker/0:2-909 [000] .... 531.235597: schedule <-worker_thread
sshd-2563 [001] .... 531.235647: schedule <-schedule_hrtimeout_range_clock
# echo 1 > function_profile_enabled
# echo 0 > function_porfile_enabled
# cat set_ftrace_filter
schedule
# cat trace
# tracer: function
#
# entries-in-buffer/entries-written: 159701/118821262 #P:4
#
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| / delay
# TASK-PID CPU# |||| TIMESTAMP FUNCTION
# | | | |||| | |
<idle>-0 [002] ...1 604.870655: local_touch_nmi <-cpu_idle
<idle>-0 [002] d..1 604.870655: enter_idle <-cpu_idle
<idle>-0 [002] d..1 604.870656: atomic_notifier_call_chain <-enter_idle
<idle>-0 [002] d..1 604.870656: __atomic_notifier_call_chain <-atomic_notifier_call_chain
The same problem could have happened with the trace_probe_ops,
but they are modified with the set_frace_filter file which does the
update at closure of the file.
The simple solution is to change ENABLE to UPDATE and call it every
time an ftrace_ops is unregistered.
Link: http://lkml.kernel.org/r/1323105776-26961-3-git-send-email-jolsa@redhat.com
Cc: stable@vger.kernel.org # 3.0+
Signed-off-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
There is a small race between try_to_wake_up() and sched_move_task(),
which is trying to move the process being woken up.
try_to_wake_up() on CPU0 sched_move_task() on CPU1
--------------------------------+---------------------------------
raw_spin_lock_irqsave(p->pi_lock)
task_waking_fair()
->p.se.vruntime -= cfs_rq->min_vruntime
ttwu_queue()
->send reschedule IPI to CPU1
raw_spin_unlock_irqsave(p->pi_lock)
task_rq_lock()
-> tring to aquire both p->pi_lock and
rq->lock with IRQ disabled
task_move_group_fair()
-> p.se.vruntime
-= (old)cfs_rq->min_vruntime
+= (new)cfs_rq->min_vruntime
task_rq_unlock()
(via IPI)
sched_ttwu_pending()
raw_spin_lock(rq->lock)
ttwu_do_activate()
...
enqueue_entity()
child.se->vruntime += cfs_rq->min_vruntime
raw_spin_unlock(rq->lock)
As a result, vruntime of the process becomes far bigger than min_vruntime,
if (new)cfs_rq->min_vruntime >> (old)cfs_rq->min_vruntime.
This patch fixes this problem by just ignoring such process in
task_move_group_fair(), because the vruntime has already been normalized in
task_waking_fair().
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20111215143741.df82dd50.nishimura@mxp.nes.nec.co.jp
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There is a small race between do_fork() and sched_move_task(), which is
trying to move the child.
do_fork() sched_move_task()
--------------------------------+---------------------------------
copy_process()
sched_fork()
task_fork_fair()
-> vruntime of the child is initialized
based on that of the parent.
-> we can see the child in "tasks" file now.
task_rq_lock()
task_move_group_fair()
-> child.se.vruntime
-= (old)cfs_rq->min_vruntime
+= (new)cfs_rq->min_vruntime
task_rq_unlock()
wake_up_new_task()
...
enqueue_entity()
child.se.vruntime += cfs_rq->min_vruntime
As a result, vruntime of the child becomes far bigger than min_vruntime,
if (new)cfs_rq->min_vruntime >> (old)cfs_rq->min_vruntime.
This patch fixes this problem by just ignoring such process in
task_move_group_fair(), because the vruntime has already been normalized in
task_fork_fair().
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20111215143607.2ee12c5d.nishimura@mxp.nes.nec.co.jp
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There is a small race between task_fork_fair() and sched_move_task(),
which is trying to move the parent.
task_fork_fair() sched_move_task()
--------------------------------+---------------------------------
cfs_rq = task_cfs_rq(current)
-> cfs_rq is the "old" one.
curr = cfs_rq->curr
-> curr is set to the parent.
task_rq_lock()
dequeue_task()
->parent.se.vruntime -= (old)cfs_rq->min_vruntime
enqueue_task()
->parent.se.vruntime += (new)cfs_rq->min_vruntime
task_rq_unlock()
raw_spin_lock_irqsave(rq->lock)
se->vruntime = curr->vruntime
-> vruntime of the child is set to that of the parent
which has already been updated by sched_move_task().
se->vruntime -= (old)cfs_rq->min_vruntime.
raw_spin_unlock_irqrestore(rq->lock)
As a result, vruntime of the child becomes far bigger than expected,
if (new)cfs_rq->min_vruntime >> (old)cfs_rq->min_vruntime.
This patch fixes this problem by setting "cfs_rq" and "curr" after
holding the rq->lock.
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Acked-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20111215143655.662676b0.nishimura@mxp.nes.nec.co.jp
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Remove cfs bandwidth period check from tg_set_cfs_period.
Invalid bandwidth period's lower/upper limits are denoted
by min_cfs_quota_period/max_cfs_quota_period repsectively,
and are checked against valid period in tg_set_cfs_bandwidth().
As pjt pointed out, negative input will result in very large unsigned
numbers and will be caught by the max allowed period test.
Signed-off-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Acked-by: Paul Turner <pjt@google.com>
[ammended changelog to mention negative values]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20111210135925.GA14593@linux.vnet.ibm.com
--
kernel/sched/core.c | 3 ---
1 file changed, 3 deletions(-)
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The current lock break relies on contention on the rq locks, something
which might never come because we've got IRQs disabled. Or will be
very likely because on anything with more than 2 cpus a synchronized
load-balance pass will very likely cause contention on the rq locks.
Also the sched_nr_migrate thing fails when it gets trapped the loops
of either the cgroup muck in load_balance_fair() or the move_tasks()
load condition.
Instead, use the new lb_flags field to propagate break/abort
conditions for all these loops and create a new loop outside the irq
disabled on the break being required.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-tsceb6w61q0gakmsccix6xxi@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
time/clocksource: Fix kernel-doc warnings
rtc: m41t80: Workaround broken alarm functionality
rtc: Expire alarms after the time is set.
binary_sysctl() calls sysctl_getname() which allocates from names_cache
slab usin __getname()
The matching function to free the name is __putname(), and not putname()
which should be used only to match getname() allocations.
This is because when auditing is enabled, putname() calls audit_putname
*instead* (not in addition) to __putname(). Then, if a syscall is in
progress, audit_putname does not release the name - instead, it expects
the name to get released when the syscall completes, but that will happen
only if audit_getname() was called previously, i.e. if the name was
allocated with getname() rather than the naked __getname(). So,
__getname() followed by putname() ends up leaking memory.
Signed-off-by: Michel Lespinasse <walken@google.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Eric Paris <eparis@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kernels where MAX_NUMNODES > BITS_PER_LONG may temporarily see an empty
nodemask in a tsk's mempolicy if its previous nodemask is remapped onto a
new set of allowed cpuset nodes where the two nodemasks, as a result of
the remap, are now disjoint.
c0ff7453bb ("cpuset,mm: fix no node to alloc memory when changing
cpuset's mems") adds get_mems_allowed() to prevent the set of allowed
nodes from changing for a thread. This causes any update to a set of
allowed nodes to stall until put_mems_allowed() is called.
This stall is unncessary, however, if at least one node remains unchanged
in the update to the set of allowed nodes. This was addressed by
89e8a244b9 ("cpusets: avoid looping when storing to mems_allowed if one
node remains set"), but it's still possible that an empty nodemask may be
read from a mempolicy because the old nodemask may be remapped to the new
nodemask during rebind. To prevent this, only avoid the stall if there is
no mempolicy for the thread being changed.
This is a temporary solution until all reads from mempolicy nodemasks can
be guaranteed to not be empty without the get_mems_allowed()
synchronization.
Also moves the check for nodemask intersection inside task_lock() so that
tsk->mems_allowed cannot change. This ensures that nothing can set this
tsk's mems_allowed out from under us and also protects tsk->mempolicy.
Reported-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Paul Menage <paul@paulmenage.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>