Otherwise we can't really fix the abi-braindeadness of forcing
libva to manually wait for rendering when switching rings. Which
in turn makes implementing hw semaphores a pointless exercise
(at least for ironlake).
[Also added the relaxed fencing param to explain the jump in
numbering - relaxed fencing is in -next.]
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
nv0x-nv4x should be mostly fine, nv50 doesn't work yet.
Signed-off-by: Francisco Jerez <currojerez@riseup.net>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
No other driver uses this, and userspace should be responsible for handling
locking between them if they share BOs.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
* 'drm-radeon-fusion' of ../drm-radeon-next:
drm/radeon/kms: add Ontario APU ucode loading support
drm/radeon/kms: add Ontario Fusion APU pci ids
drm/radeon/kms: enable MSIs on fusion APUs
drm/radeon/kms: add power table parsing support for Ontario fusion APUs
drm/radeon/kms: refactor atombios power state fetching
drm/radeon/kms: add bo blit support for Ontario fusion APUs
drm/radeon/kms: add thermal sensor support for fusion APUs
drm/radeon/kms: fill in GPU init for AMD Ontario Fusion APUs
drm/radeon/kms: add radeon_asic struct for AMD Ontario fusion APUs
drm/radeon/kms: evergreen.c updates for fusion
drm/radeon/kms: MC setup changes for fusion APUs
drm/radeon/kms: move r7xx/evergreen to its own vram_gtt setup function
drm/radeon/kms: add support for ss overrides on Fusion APUs
drm/radeon/kms: Add support for external encoders on fusion APUs
drm/radeon/kms: atom changes for DCE4.1 devices
drm/radeon/kms: add new family id for AMD Ontario APUs
drm/radeon/kms: upstream power table updates
drm/radeon/kms: upstream atombios.h updates
drm/radeon/kms: upstream ObjectID.h updates
drm/radeon/kms: setup mc chremap properly on r7xx/evergreen
Just some minor shuffling to get rid of any agp traces in the
exported functions.
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
This patch attempts to fix up shortcomings with the current calling
sequences.
1) There's a fastpath where no locking occurs and only io_mem_reserved is
called to obtain needed info for mapping. The fastpath is set per
memory type manager.
2) If the fastpath is disabled, io_mem_reserve and io_mem_free will be exactly
balanced and not called recursively for the same struct ttm_mem_reg.
3) Optionally the driver can choose to enable a per memory type manager LRU
eviction mechanism that, when io_mem_reserve returns -EAGAIN will attempt
to kill user-space mappings of memory in that manager to free up needed
resources
Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Ben Skeggs <bskeggs@redhat.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
Rather than having the driver supply the validation sequence, leave that
responsibility to TTM. This saves some confusion and a function argument.
Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
Drastically reduce the number of spin lock / unlock operations by performing
unreserving and fencing under global locks.
Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Jerome Glisse <j.glisse@redhat.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
The bo lock used only to protect the bo sync object members, and since it
is a per bo lock, fencing a buffer list will see a lot of locks and unlocks.
Replace it with a per-device lock that protects the sync object members on
*all* bos. Reading and setting these members will always be very quick, so
the risc of heavy lock contention is microscopic. Note that waiting for
sync objects will always take place outside of this lock.
The bo device fence lock will eventually be replaced with a seqlock /
rcu mechanism so we can determine that a bo is idle under a
rcu / read seqlock.
However this change will allow us to batch fencing and unreserving of
buffers with a minimal amount of locking.
Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Jerome Glisse <j.glisse@gmail.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
Add an aid for the driver to detect deadlocks on multi-bo reservations
Update documentation.
Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Jerome Glisse <j.glisse@gmail.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
Makes it possible to reserve a list of buffer objects with a single
spin lock / unlock if there is no contention.
Should improve cpu usage on SMP kernels.
v2: Initialize private list members on reserve and don't call
ttm_bo_list_ref_sub() with zero put_count.
Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
The DRI2 swap & sync implementation needs precise
vblank counts and precise timestamps corresponding
to those vblank counts. For conformance to the OpenML
OML_sync_control extension specification the DRM
timestamp associated with a vblank count should
correspond to the start of video scanout of the first
scanline of the video frame following the vblank
interval for that vblank count.
Therefore we need to carry around precise timestamps
for vblanks. Currently the DRM and KMS drivers generate
timestamps ad-hoc via do_gettimeofday() in some
places. The resulting timestamps are sometimes not
very precise due to interrupt handling delays, they
don't conform to OML_sync_control and some are wrong,
as they aren't taken synchronized to the vblank.
This patch implements support inside the drm core
for precise and robust timestamping. It consists
of the following interrelated pieces.
1. Vblank timestamp caching:
A per-crtc ringbuffer stores the most recent vblank
timestamps corresponding to vblank counts.
The ringbuffer can be read out lock-free via the
accessor function:
struct timeval timestamp;
vblankcount = drm_vblank_count_and_time(dev, crtcid, ×tamp).
The function returns the current vblank count and
the corresponding timestamp for start of video
scanout following the vblank interval. It can be
used anywhere between enclosing drm_vblank_get(dev, crtcid)
and drm_vblank_put(dev,crtcid) statements. It is used
inside the drmWaitVblank ioctl and in the vblank event
queueing and handling. It should be used by kms drivers for
timestamping of bufferswap completion.
The timestamp ringbuffer is reinitialized each time
vblank irq's get reenabled in drm_vblank_get()/
drm_update_vblank_count(). It is invalidated when
vblank irq's get disabled.
The ringbuffer is updated inside drm_handle_vblank()
at each vblank irq.
2. Calculation of precise vblank timestamps:
drm_get_last_vbltimestamp() is used to compute the
timestamp for the end of the most recent vblank (if
inside active scanout), or the expected end of the
current vblank interval (if called inside a vblank
interval). The function calls into a new optional kms
driver entry point dev->driver->get_vblank_timestamp()
which is supposed to provide the precise timestamp.
If a kms driver doesn't implement the entry point or
if the call fails, a simple do_gettimeofday() timestamp
is returned as crude approximation of the true vblank time.
A new drm module parameter drm.timestamp_precision_usec
allows to disable high precision timestamps (if set to
zero) or to specify the maximum acceptable error in
the timestamps in microseconds.
Kms drivers could implement their get_vblank_timestamp()
function in a gpu specific way, as long as returned
timestamps conform to OML_sync_control, e.g., by use
of gpu specific hardware timestamps.
Optionally, kms drivers can simply wrap and use the new
utility function drm_calc_vbltimestamp_from_scanoutpos().
This function calls a new optional kms driver function
dev->driver->get_scanout_position() which returns the
current horizontal and vertical video scanout position
of the crtc. The scanout position together with the
drm_display_timing of the current video mode is used
to calculate elapsed time relative to start of active scanout
for the current video frame. This elapsed time is subtracted
from the current do_gettimeofday() time to get the timestamp
corresponding to start of video scanout. Currently
non-interlaced, non-doublescan video modes, with or
without panel scaling are handled correctly. Interlaced/
doublescan modes are tbd in a future patch.
3. Filtering of redundant vblank irq's and removal of
some race-conditions in the vblank irq enable/disable path:
Some gpu's (e.g., Radeon R500/R600) send spurious vblank
irq's outside the vblank if vblank irq's get reenabled.
These get detected by use of the vblank timestamps and
filtered out to avoid miscounting of vblanks.
Some race-conditions between the vblank irq enable/disable
functions, the vblank irq handler and the gpu itself (updating
its hardware vblank counter in the "wrong" moment) are
fixed inside vblank_disable_and_save() and
drm_update_vblank_count() by use of the vblank timestamps and
a new spinlock dev->vblank_time_lock.
The time until vblank irq disable is now configurable via
a new drm module parameter drm.vblankoffdelay to allow
experimentation with timeouts that are much shorter than
the current 5 seconds and should allow longer vblank off
periods for better power savings.
Followup patches will use these new functions to
implement precise timestamping for the intel and radeon
kms drivers.
Signed-off-by: Mario Kleiner <mario.kleiner@tuebingen.mpg.de>
Signed-off-by: Dave Airlie <airlied@redhat.com>
Call destroy() on _all_ ttm_bo_init() failures, and make sure that
behavior is documented in the function description.
Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
Remove an obsolete comment about mm nodes.
Document the new bo range manager interface.
Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>