err() was a very old USB-specific macro that I thought had
gone away. This patch removes it from being used in the
driver and uses dev_err() instead.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This reverts commit 26c71a79ca.
It's not needed, to quote Ming Lei:
Looks you have queued the patch into your tree, but just now I
find the patch is not needed at all, since we have had
minor_rwsem(drivers/usb/core/file.c) for this purpose, please
drop the patch, sorry for it.
Cc: Ming Lei <tom.leiming@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
It is not necessary to use the 'open_count' for handling
runtime pm only, because runtinme pm has built-in counter
to handle this, so remove it to make code clean.
Signed-off-by: Ming Lei <tom.leiming@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
If usb device is disconnected between usb_get_intfdata()
and kref_get() in skel_open(), kref_get may access a freed
object.
Also check if device is disconnected in ->open.
Signed-off-by: Ming Lei <tom.leiming@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
All file_operations should get a .llseek operation so we can make
nonseekable_open the default for future file operations without a
.llseek pointer.
The three cases that we can automatically detect are no_llseek, seq_lseek
and default_llseek. For cases where we can we can automatically prove that
the file offset is always ignored, we use noop_llseek, which maintains
the current behavior of not returning an error from a seek.
New drivers should normally not use noop_llseek but instead use no_llseek
and call nonseekable_open at open time. Existing drivers can be converted
to do the same when the maintainer knows for certain that no user code
relies on calling seek on the device file.
The generated code is often incorrectly indented and right now contains
comments that clarify for each added line why a specific variant was
chosen. In the version that gets submitted upstream, the comments will
be gone and I will manually fix the indentation, because there does not
seem to be a way to do that using coccinelle.
Some amount of new code is currently sitting in linux-next that should get
the same modifications, which I will do at the end of the merge window.
Many thanks to Julia Lawall for helping me learn to write a semantic
patch that does all this.
===== begin semantic patch =====
// This adds an llseek= method to all file operations,
// as a preparation for making no_llseek the default.
//
// The rules are
// - use no_llseek explicitly if we do nonseekable_open
// - use seq_lseek for sequential files
// - use default_llseek if we know we access f_pos
// - use noop_llseek if we know we don't access f_pos,
// but we still want to allow users to call lseek
//
@ open1 exists @
identifier nested_open;
@@
nested_open(...)
{
<+...
nonseekable_open(...)
...+>
}
@ open exists@
identifier open_f;
identifier i, f;
identifier open1.nested_open;
@@
int open_f(struct inode *i, struct file *f)
{
<+...
(
nonseekable_open(...)
|
nested_open(...)
)
...+>
}
@ read disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ read_no_fpos disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
... when != off
}
@ write @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ write_no_fpos @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
... when != off
}
@ fops0 @
identifier fops;
@@
struct file_operations fops = {
...
};
@ has_llseek depends on fops0 @
identifier fops0.fops;
identifier llseek_f;
@@
struct file_operations fops = {
...
.llseek = llseek_f,
...
};
@ has_read depends on fops0 @
identifier fops0.fops;
identifier read_f;
@@
struct file_operations fops = {
...
.read = read_f,
...
};
@ has_write depends on fops0 @
identifier fops0.fops;
identifier write_f;
@@
struct file_operations fops = {
...
.write = write_f,
...
};
@ has_open depends on fops0 @
identifier fops0.fops;
identifier open_f;
@@
struct file_operations fops = {
...
.open = open_f,
...
};
// use no_llseek if we call nonseekable_open
////////////////////////////////////////////
@ nonseekable1 depends on !has_llseek && has_open @
identifier fops0.fops;
identifier nso ~= "nonseekable_open";
@@
struct file_operations fops = {
... .open = nso, ...
+.llseek = no_llseek, /* nonseekable */
};
@ nonseekable2 depends on !has_llseek @
identifier fops0.fops;
identifier open.open_f;
@@
struct file_operations fops = {
... .open = open_f, ...
+.llseek = no_llseek, /* open uses nonseekable */
};
// use seq_lseek for sequential files
/////////////////////////////////////
@ seq depends on !has_llseek @
identifier fops0.fops;
identifier sr ~= "seq_read";
@@
struct file_operations fops = {
... .read = sr, ...
+.llseek = seq_lseek, /* we have seq_read */
};
// use default_llseek if there is a readdir
///////////////////////////////////////////
@ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier readdir_e;
@@
// any other fop is used that changes pos
struct file_operations fops = {
... .readdir = readdir_e, ...
+.llseek = default_llseek, /* readdir is present */
};
// use default_llseek if at least one of read/write touches f_pos
/////////////////////////////////////////////////////////////////
@ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read.read_f;
@@
// read fops use offset
struct file_operations fops = {
... .read = read_f, ...
+.llseek = default_llseek, /* read accesses f_pos */
};
@ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write.write_f;
@@
// write fops use offset
struct file_operations fops = {
... .write = write_f, ...
+ .llseek = default_llseek, /* write accesses f_pos */
};
// Use noop_llseek if neither read nor write accesses f_pos
///////////////////////////////////////////////////////////
@ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
identifier write_no_fpos.write_f;
@@
// write fops use offset
struct file_operations fops = {
...
.write = write_f,
.read = read_f,
...
+.llseek = noop_llseek, /* read and write both use no f_pos */
};
@ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write_no_fpos.write_f;
@@
struct file_operations fops = {
... .write = write_f, ...
+.llseek = noop_llseek, /* write uses no f_pos */
};
@ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
@@
struct file_operations fops = {
... .read = read_f, ...
+.llseek = noop_llseek, /* read uses no f_pos */
};
@ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
@@
struct file_operations fops = {
...
+.llseek = noop_llseek, /* no read or write fn */
};
===== End semantic patch =====
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Julia Lawall <julia@diku.dk>
Cc: Christoph Hellwig <hch@infradead.org>
For more clearance what the functions actually do,
usb_buffer_alloc() is renamed to usb_alloc_coherent()
usb_buffer_free() is renamed to usb_free_coherent()
They should only be used in code which really needs DMA coherency.
All call sites have been changed accordingly, except for staging
drivers.
Signed-off-by: Daniel Mack <daniel@caiaq.de>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Pedro Ribeiro <pedrib@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
BKL not needed at all. Removed without replacement.
Signed-off-by: Oliver Neukum <oliver@neukum.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
The id_table field of the struct usb_device_id is constant in <linux/usb.h>
so it is worth to make the initialization data also constant.
The semantic match that finds this kind of pattern is as follows:
(http://coccinelle.lip6.fr/)
// <smpl>
@r@
disable decl_init,const_decl_init;
identifier I1, I2, x;
@@
struct I1 {
...
const struct I2 *x;
...
};
@s@
identifier r.I1, y;
identifier r.x, E;
@@
struct I1 y = {
.x = E,
};
@c@
identifier r.I2;
identifier s.E;
@@
const struct I2 E[] = ... ;
@depends on !c@
identifier r.I2;
identifier s.E;
@@
+ const
struct I2 E[] = ...;
// </smpl>
Signed-off-by: Németh Márton <nm127@freemail.hu>
Cc: Julia Lawall <julia@diku.dk>
Cc: cocci@diku.dk
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Correct priority problem in the use of ! and &.
The semantic patch that makes this change is as follows:
(http://coccinelle.lip6.fr/)
// <smpl>
@@ expression E; constant C; @@
- !E & C
+ !(E & C)
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Non blocking IO is supported in the read path of usb-skeleton.
This is done by just not blocking. As support for handling signals
without stopping IO is already there, it can be used for O_NONBLOCK, too.
Signed-off-by: Oliver Neukum <oliver@neukum.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
usb:usb-skeleton: honor O_NONBLOCK in write path
nonblocking writes are allowed by using down_trylock if necessary
to reserve an URB
Signed-off-by: Oliver Neukum <oliver@neukum.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
The read code path of the skeleton driver really sucks
- skel_read works only for devices which always send data
- the timeout comes out of thin air
- it blocks signals for the duration of the timeout
- it disallows nonblocking IO by design
This patch fixes it by using a real urb, a completion and interruptible waits.
Signed-off-by: Oliver Neukum <oliver@neukum.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
338b67b0c1 removed the info macro and
replaced its uses with dev_info. This patch does so for
usb-skeleton.c, which was missed.
Signed-off-by: Matt Kraai <kraai@ftbfs.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This weekend I was hacking around with a trivial USB driver for talking
to the boot load firmware of a USB Bit Whacker. It's running the
MicroChip Pic18 boot loader firmware and I'm putting together a flash
program for writing new FW to the thing.
Anyway in my use of the usb-skeleton.c as my starting point I discovered
my test program was getting hung up after attempting to write a buffer.
The application and driver where hung in a way that required me to
reboot to get it to clean up so I could try again.
It turned out the code path through skel_open can grap the driver's
io_mutex lock and forget to release it.
The following patch fixes the problem for me.
Signed-off-by: Mark Gross <mgross@linux.intel.com>
Cc: Oliver Neukum <oliver@neukum.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>