Pull core/locking changes for v3.4 from Ingo Molnar
* 'core-locking-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
futex: Simplify return logic
futex: Cover all PI opcodes with cmpxchg enabled check
Some of the newer futex PI opcodes do not check the cmpxchg enabled
variable and call unconditionally into the handling functions. Cover
all PI opcodes in a separate check.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Darren Hart <dvhart@linux.intel.com>
It was found (by Sasha) that if you use a futex located in the gate
area we get stuck in an uninterruptible infinite loop, much like the
ZERO_PAGE issue.
While looking at this problem, PeterZ realized you'll get into similar
trouble when hitting any install_special_pages() mapping. And are there
still drivers setting up their own special mmaps without page->mapping,
and without special VM or pte flags to make get_user_pages fail?
In most cases, if page->mapping is NULL, we do not need to retry at all:
Linus points out that even /proc/sys/vm/drop_caches poses no problem,
because it ends up using remove_mapping(), which takes care not to
interfere when the page reference count is raised.
But there is still one case which does need a retry: if memory pressure
called shmem_writepage in between get_user_pages_fast dropping page
table lock and our acquiring page lock, then the page gets switched from
filecache to swapcache (and ->mapping set to NULL) whatever the refcount.
Fault it back in to get the page->mapping needed for key->shared.inode.
Reported-by: Sasha Levin <levinsasha928@gmail.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The changed files were only including linux/module.h for the
EXPORT_SYMBOL infrastructure, and nothing else. Revector them
onto the isolated export header for faster compile times.
Nothing to see here but a whole lot of instances of:
-#include <linux/module.h>
+#include <linux/export.h>
This commit is only changing the kernel dir; next targets
will probably be mm, fs, the arch dirs, etc.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
The variables here are really not used uninitialized.
kernel/futex.c: In function 'fixup_pi_state_owner.clone.17':
kernel/futex.c:1582:6: warning: 'curval' may be used uninitialized in this function
kernel/futex.c: In function 'handle_futex_death':
kernel/futex.c:2486:6: warning: 'nval' may be used uninitialized in this function
kernel/futex.c: In function 'do_futex':
kernel/futex.c:863:11: warning: 'curval' may be used uninitialized in this function
kernel/futex.c:828:6: note: 'curval' was declared here
kernel/futex.c:898:5: warning: 'oldval' may be used uninitialized in this function
kernel/futex.c:890:6: note: 'oldval' was declared here
Signed-off-by: Vitaliy Ivanov <vitalivanov@gmail.com>
Acked-by: Darren Hart <dvhart@linux.intel.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
commit 7485d0d375 (futexes: Remove rw
parameter from get_futex_key()) in 2.6.33 fixed two problems: First, It
prevented a loop when encountering a ZERO_PAGE. Second, it fixed RW
MAP_PRIVATE futex operations by forcing the COW to occur by
unconditionally performing a write access get_user_pages_fast() to get
the page. The commit also introduced a user-mode regression in that it
broke futex operations on read-only memory maps. For example, this
breaks workloads that have one or more reader processes doing a
FUTEX_WAIT on a futex within a read only shared file mapping, and a
writer processes that has a writable mapping issuing the FUTEX_WAKE.
This fixes the regression for valid futex operations on RO mappings by
trying a RO get_user_pages_fast() when the RW get_user_pages_fast()
fails. This change makes it necessary to also check for invalid use
cases, such as anonymous RO mappings (which can never change) and the
ZERO_PAGE which the commit referenced above was written to address.
This patch does restore the original behavior with RO MAP_PRIVATE
mappings, which have inherent user-mode usage problems and don't really
make sense. With this patch performing a FUTEX_WAIT within a RO
MAP_PRIVATE mapping will be successfully woken provided another process
updates the region of the underlying mapped file. However, the mmap()
man page states that for a MAP_PRIVATE mapping:
It is unspecified whether changes made to the file after
the mmap() call are visible in the mapped region.
So user-mode users attempting to use futex operations on RO MAP_PRIVATE
mappings are depending on unspecified behavior. Additionally a
RO MAP_PRIVATE mapping could fail to wake up in the following case.
Thread-A: call futex(FUTEX_WAIT, memory-region-A).
get_futex_key() return inode based key.
sleep on the key
Thread-B: call mprotect(PROT_READ|PROT_WRITE, memory-region-A)
Thread-B: write memory-region-A.
COW happen. This process's memory-region-A become related
to new COWed private (ie PageAnon=1) page.
Thread-B: call futex(FUETX_WAKE, memory-region-A).
get_futex_key() return mm based key.
IOW, we fail to wake up Thread-A.
Once again doing something like this is just silly and users who do
something like this get what they deserve.
While RO MAP_PRIVATE mappings are nonsensical, checking for a private
mapping requires walking the vmas and was deemed too costly to avoid a
userspace hang.
This Patch is based on Peter Zijlstra's initial patch with modifications to
only allow RO mappings for futex operations that need VERIFY_READ access.
Reported-by: David Oliver <david@rgmadvisors.com>
Signed-off-by: Shawn Bohrer <sbohrer@rgmadvisors.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Darren Hart <dvhart@linux.intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: peterz@infradead.org
Cc: eric.dumazet@gmail.com
Cc: zvonler@rgmadvisors.com
Cc: hughd@google.com
Link: http://lkml.kernel.org/r/1309450892-30676-1-git-send-email-sbohrer@rgmadvisors.com
Cc: stable@kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
I haven't reproduced it myself but the fail scenario is that on such
machines (notably ARM and some embedded powerpc), if you manage to hit
that futex path on a writable page whose dirty bit has gone from the PTE,
you'll livelock inside the kernel from what I can tell.
It will go in a loop of trying the atomic access, failing, trying gup to
"fix it up", getting succcess from gup, go back to the atomic access,
failing again because dirty wasn't fixed etc...
So I think you essentially hang in the kernel.
The scenario is probably rare'ish because affected architecture are
embedded and tend to not swap much (if at all) so we probably rarely hit
the case where dirty is missing or young is missing, but I think Shan has
a piece of SW that can reliably reproduce it using a shared writable
mapping & fork or something like that.
On archs who use SW tracking of dirty & young, a page without dirty is
effectively mapped read-only and a page without young unaccessible in the
PTE.
Additionally, some architectures might lazily flush the TLB when relaxing
write protection (by doing only a local flush), and expect a fault to
invalidate the stale entry if it's still present on another processor.
The futex code assumes that if the "in_atomic()" access -EFAULT's, it can
"fix it up" by causing get_user_pages() which would then be equivalent to
taking the fault.
However that isn't the case. get_user_pages() will not call
handle_mm_fault() in the case where the PTE seems to have the right
permissions, regardless of the dirty and young state. It will eventually
update those bits ... in the struct page, but not in the PTE.
Additionally, it will not handle the lazy TLB flushing that can be
required by some architectures in the fault case.
Basically, gup is the wrong interface for the job. The patch provides a
more appropriate one which boils down to just calling handle_mm_fault()
since what we are trying to do is simulate a real page fault.
The futex code currently attempts to write to user memory within a
pagefault disabled section, and if that fails, tries to fix it up using
get_user_pages().
This doesn't work on archs where the dirty and young bits are maintained
by software, since they will gate access permission in the TLB, and will
not be updated by gup().
In addition, there's an expectation on some archs that a spurious write
fault triggers a local TLB flush, and that is missing from the picture as
well.
I decided that adding those "features" to gup() would be too much for this
already too complex function, and instead added a new simpler
fixup_user_fault() which is essentially a wrapper around handle_mm_fault()
which the futex code can call.
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix some nits Darren saw, fiddle comment layout]
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Reported-by: Shan Hai <haishan.bai@gmail.com>
Tested-by: Shan Hai <haishan.bai@gmail.com>
Cc: David Laight <David.Laight@ACULAB.COM>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Darren Hart <darren.hart@intel.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
futex: Fix WARN_ON() test for UP
WARN_ON_SMP(): Allow use in if() statements on UP
x86, dumpstack: Use %pB format specifier for stack trace
vsprintf: Introduce %pB format specifier
lockdep: Remove unused 'factor' variable from lockdep_stats_show()
An update of the futex code had a
WARN_ON(!spin_is_locked(q->lock_ptr))
But on UP, spin_is_locked() is always false, and will
trigger this warning, and even worse, it will exit the function
without doing the necessary work.
Converting this to a WARN_ON_SMP() fixes the problem.
Reported-by: Richard Weinberger <richard@nod.at>
Tested-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Darren Hart <dvhart@linux.intel.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
LKML-Reference: <20110317192208.682654502@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
CAP_IPC_OWNER and CAP_IPC_LOCK can be checked against current_user_ns(),
because the resource comes from current's own ipc namespace.
setuid/setgid are to uids in own namespace, so again checks can be against
current_user_ns().
Changelog:
Jan 11: Use task_ns_capable() in place of sched_capable().
Jan 11: Use nsown_capable() as suggested by Bastian Blank.
Jan 11: Clarify (hopefully) some logic in futex and sched.c
Feb 15: use ns_capable for ipc, not nsown_capable
Feb 23: let copy_ipcs handle setting ipc_ns->user_ns
Feb 23: pass ns down rather than taking it from current
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Acked-by: Daniel Lezcano <daniel.lezcano@free.fr>
Acked-by: David Howells <dhowells@redhat.com>
Cc: James Morris <jmorris@namei.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
futex,plist: Pass the real head of the priority list to plist_del()
futex,plist: Remove debug lock assignment from plist_node
plist: Shrink struct plist_head
plist: Add priority list test
The original code uses &plist_node->plist as the fake head of
the priority list for plist_del(), these debug locks in
the fake head are needed for CONFIG_DEBUG_PI_LIST.
But now we always pass the real head to plist_del(), the debug locks
in plist_node will not be used, so we remove these assignments.
Acked-by: Darren Hart <dvhart@linux.intel.com>
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
LKML-Reference: <4D10797E.7040803@cn.fujitsu.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Some plist_del()s in kernel/futex.c are passed a faked head of the
priority list.
It does not fail because the current code does not require the real head
in plist_del(). The current code of plist_del() just uses the head for checking,
so it will not cause a bad result even when we use a faked head.
But it is undocumented usage:
/**
* plist_del - Remove a @node from plist.
*
* @node: &struct plist_node pointer - entry to be removed
* @head: &struct plist_head pointer - list head
*/
The document says that the @head is the "list head" head of the priority list.
In futex code, several places use "plist_del(&q->list, &q->list.plist);",
they pass a fake head. We need to fix them all.
Thanks to Darren Hart for many suggestions.
Acked-by: Darren Hart <dvhart@linux.intel.com>
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
LKML-Reference: <4D11984A.5030203@cn.fujitsu.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The result is not going to change under us, so no need to reevaluate
this over and over. Seems to be a leftover from the mechanical mass
conversion of task->pid to task_pid_vnr(tsk).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>