Current implementation of RTC interface allows for system suspend to
occur in the following cases:
(a) if a timer is set in the past and rtc_timer_do_work() is scheduled
to handle it, and
(b) if rtc_timer_do_work() is called to handle expired timers whose
handlers implement a preemption point.
A pending suspend request may be honoured in the above cases causing
timer handling to be delayed until after the next resume. This is
undesirable since timer handlers may have time-critical code to execute.
This patch makes sure that the system stays awake until all expired
timers are handled.
Note that all calls to pm_stay_awake() are eventually paired with
the single pm_relax() call in rtc_timer_do_work(), which is launched
using schedule_work().
Cc: Alessandro Zummo <a.zummo@towertech.it>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Arve Hjonnevag <arve@android.com>
Cc: Todd Poynor <toddpoynor@google.com>
Signed-off-by: Zoran Markovic <zoran.markovic@linaro.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
If rtc->irq_task is non-NULL and task is NULL, they always
rtc_irq_set_freq(), whenever err is set to -EBUSY it will then immediately
be set to -EACCES, misleading the caller as to the underlying problem.
Signed-off-by: Chris Brand <chris.brand@broadcom.com>
Acked-by: Alessandro Zummo <a.zummo@towertech.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fixes the following types of errors:
ERROR: "foo* bar" should be "foo *bar"
ERROR: else should follow close brace '}'
WARNING: braces {} are not necessary for single statement blocks
Signed-off-by: Sachin Kamat <sachin.kamat@linaro.org>
Cc: Jingoo Han <jg1.han@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All in-kernel users of class_find_device() don't really need mutable
data for match callback.
In two places (kernel/power/suspend_test.c, drivers/scsi/osd/osd_uld.c)
this patch changes match callbacks to use const search data.
The const is propagated to rtc_class_open() and power_supply_get_by_name()
parameters.
Note that there's a dev reference leak in suspend_test.c that's not
touched in this patch.
Signed-off-by: Michał Mirosław <mirq-linux@rere.qmqm.pl>
Acked-by: Grant Likely <grant.likely@secretlab.ca>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
If an RTC alarm fires just as suspend is happening, it is possible for
suspend to complete and the alarm to be missed.
To avoid the race, we must register the event with the PM core.
As the event is made visible to userspace through a thread which is
only scheduled by the interrupt, we need a pm_stay_awake/pm_relax
pair preventing suspend from the interrupt until the thread completes
its work.
This makes the pm_wakeup_event() call in cmos_interrupt unnecessary as
it provides suspend protection for all RTCs that use rtc_update_irq.
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Richard Weinberger noticed that on some RTC hardware that
doesn't support UIE mode, due to coarse granular alarms
(like 1minute resolution), the current virtualized RTC
support doesn't properly error out when UIE is enabled.
Instead the current code queues an alarm for the next second,
but it won't fire until up to a miniute later.
This patch provides a generic way to flag this sort of hardware
and fixes the issue on the mpc5121 where Richard noticed the
problem.
CC: stable@vger.kernel.org
Reported-by: Richard Weinberger <richard@nod.at>
Tested-by: Richard Weinberger <richard@nod.at>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Currently, the RTC code does not disable the alarm in the hardware.
This means that after a sequence such as the one below (the files are in the
RTC sysfs), the box will boot up after 2 minutes even though we've
asked for the alarm to be turned off.
# echo $((`cat since_epoch`)+120) > wakealarm
# echo 0 > wakealarm
# poweroff
Fix this by disabling the alarm when there are no timers to run.
The original version of this patch was reverted. This version
disables the irq directly instead of setting a disabled timer
in the future.
Cc: stable@kernel.org
Cc: John Stultz <john.stultz@linaro.org>
Signed-off-by: Rabin Vincent <rabin.vincent@stericsson.com>
[Merged in the second revision from Rabin]
Signed-off-by: John Stultz <john.stultz@linaro.org>
If the alarm time programming in the rtc is ever in the past, it won't fire,
and any other alarm will be queued after it so they won't fire either.
So any time that the alarm might be in the past, we need to trigger
the irq handler to ensure the old alarm is cleared and the timer queue
is fully in the future.
This is done whenever the RTC clock is set.
This is the second revision of this patch, which was earlier reverted.
This version avoids the initialization problem, which is handled by
a different patch.
Tested-by: Sander Eikelenboom <linux@eikelenboom.it>
Signed-off-by: NeilBrown <neilb@suse.de>
[Remove problematic initialization change, update commit log, also
catch set_mmss case -jstultz]
Signed-off-by: John Stultz <john.stultz@linaro.org>
In some cases at boot up, the RTC alarm may be set in the past,
but still have the enabled flag on. This was causing problems,
because we would then enqueue the alarm into the timerqueue,
but it would never fire. This would clog up the timerqueue
and keep other alarms from working.
The fix is to check the alarm against the current rtc time at
boot and avoid enqueueing the alarm if it is in the past.
Reported-by: NeilBrown <neilb@suse.de>
Tested-by: NeilBrown <neilb@suse.de>
Tested-by: Sander Eikelenboom <linux@eikelenboom.it>
Signed-off-by: John Stultz <john.stultz@linaro.org>
This reverts commit 93b2ec0128.
The call to "schedule_work()" in rtc_initialize_alarm() happens too
early, and can cause oopses at bootup
Neil Brown explains why we do it:
"If you set an alarm in the future, then shutdown and boot again after
that time, then you will end up with a timer_queue node which is in
the past.
When this happens the queue gets stuck. That entry-in-the-past won't
get removed until and interrupt happens and an interrupt won't happen
because the RTC only triggers an interrupt when the alarm is "now".
So you'll find that e.g. "hwclock" will always tell you that
'select' timed out.
So we force the interrupt work to happen at the start just in case."
and has a patch that convert it to do things in-process rather than with
the worker thread, but right now it's too late to play around with this,
so we just revert the patch that caused problems for now.
Reported-by: Sander Eikelenboom <linux@eikelenboom.it>
Requested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Requested-by: John Stultz <john.stultz@linaro.org>
Cc: Neil Brown <neilb@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit c0afabd3d5.
It causes failures on Toshiba laptops - instead of disabling the alarm,
it actually seems to enable it on the affected laptops, resulting in
(for example) the laptop powering on automatically five minutes after
shutdown.
There's a patch for it that appears to work for at least some people,
but it's too late to play around with this, so revert for now and try
again in the next merge window.
See for example
http://bugs.debian.org/652869
Reported-and-bisected-by: Andreas Friedrich <afrie@gmx.net> (Toshiba Tecra)
Reported-by: Antonio-M. Corbi Bellot <antonio.corbi@ua.es> (Toshiba Portege R500)
Reported-by: Marco Santos <marco.santos@waynext.com> (Toshiba Portege Z830)
Reported-by: Christophe Vu-Brugier <cvubrugier@yahoo.fr> (Toshiba Portege R830)
Cc: Jonathan Nieder <jrnieder@gmail.com>
Requested-by: John Stultz <john.stultz@linaro.org>
Cc: stable@kernel.org # for the versions that applied this
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the alarm time programming in the rtc is ever in the past, it won't fire,
and any other alarm will be queued after it so they won't fire either.
So any time that the alarm might be in the past, we need to trigger
the irq handler to ensure the old alarm is cleared and the timer queue
is fully in the future.
This can happen:
- when we first initialise the alarm
- when we set the time in the rtc.
so follow both of these by scheduling the timer work function.
CC: stable@kernel.org
Signed-off-by: NeilBrown <neilb@suse.de>
[Also catch set_mmss case -jstultz]
Signed-off-by: John Stultz <john.stultz@linaro.org>
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
clockevents: Set noop handler in clockevents_exchange_device()
tick-broadcast: Stop active broadcast device when replacing it
clocksource: Fix bug with max_deferment margin calculation
rtc: Fix some bugs that allowed accumulating time drift in suspend/resume
rtc: Disable the alarm in the hardware
Currently, the RTC code does not disable the alarm in the hardware.
This means that after a sequence such as the one below (the files are in the
RTC sysfs), the box will boot up after 2 minutes even though we've
asked for the alarm to be turned off.
# echo $((`cat since_epoch`)+120) > wakealarm
# echo 0 > wakealarm
# poweroff
Fix this by disabling the alarm when there are no timers to run.
Cc: stable@kernel.org
Cc: John Stultz <john.stultz@linaro.org>
Signed-off-by: Rabin Vincent <rabin.vincent@stericsson.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
The module.h was implicitly everywhere, but when we clean
that up, the implicit users will compile fail; fix them up
in advance.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Ben reported a lockup related to rtc. The lockup happens due to:
CPU0 CPU1
rtc_irq_set_state() __run_hrtimer()
spin_lock_irqsave(&rtc->irq_task_lock) rtc_handle_legacy_irq();
spin_lock(&rtc->irq_task_lock);
hrtimer_cancel()
while (callback_running);
So the running callback never finishes as it's blocked on
rtc->irq_task_lock.
Use hrtimer_try_to_cancel() instead and drop rtc->irq_task_lock while
waiting for the callback. Fix this for both rtc_irq_set_state() and
rtc_irq_set_freq().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reported-by: Ben Greear <greearb@candelatech.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The RTC pie hrtimer is self rearming. We really need to limit the
frequency to something sensible. Thus limit it to the 8192Hz max
value from the rtc man documentation
Cc: Willy Tarreau <w@1wt.eu>
Cc: stable@kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[jstultz: slightly reworked to use RTC_MAX_FREQ value]
Signed-off-by: John Stultz <john.stultz@linaro.org>
Ben reported a lockup related to rtc. The lockup happens due to:
CPU0 CPU1
rtc_irq_set_state() __run_hrtimer()
spin_lock_irqsave(&rtc->irq_task_lock) rtc_handle_legacy_irq();
spin_lock(&rtc->irq_task_lock);
hrtimer_cancel()
while (callback_running);
So the running callback never finishes as it's blocked on
rtc->irq_task_lock.
Use hrtimer_try_to_cancel() instead and drop rtc->irq_task_lock while
waiting for the callback. Fix this for both rtc_irq_set_state() and
rtc_irq_set_freq().
Cc: stable@kernel.org
Reported-by: Ben Greear <greearb@candelatech.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
In rtc_irq_set_state, the code checks the correctness of the parameters,
but then goes on to unconditionally arms/disarms the hrtimer. Thus a
random task might arm/disarm rtc timer and surprise the real owner by
either generating events or by stopping them.
Cc: stable@kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
It's not referenced outside this file so there's no need for it to be in
the global namespace and sparse warns about that.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>