Since we now take an active approach to load balancing, we don't need to
balance RT tasks via the normal task balancer. In fact, this code was
found to pull RT tasks away from CPUS that the active movement performed,
resulting in large latencies.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch adds pushing of overloaded RT tasks from a runqueue that is
having tasks (most likely RT tasks) added to the run queue.
TODO: We don't cover the case of waking of new RT tasks (yet).
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch adds the algorithm to pull tasks from RT overloaded runqueues.
When a pull RT is initiated, all overloaded runqueues are examined for
a RT task that is higher in prio than the highest prio task queued on the
target runqueue. If another runqueue holds a RT task that is of higher
prio than the highest prio task on the target runqueue is found it is pulled
to the target runqueue.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch adds an RT overload accounting system. When a runqueue has
more than one RT task queued, it is marked as overloaded. That is that it
is a candidate to have RT tasks pulled from it.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch adds an algorithm to push extra RT tasks off a run queue to
other CPU runqueues.
When more than one RT task is added to a run queue, this algorithm takes
an assertive approach to push the RT tasks that are not running onto other
run queues that have lower priority. The way this works is that the highest
RT task that is not running is looked at and we examine the runqueues on
the CPUS for that tasks affinity mask. We find the runqueue with the lowest
prio in the CPU affinity of the picked task, and if it is lower in prio than
the picked task, we push the task onto that CPU runqueue.
We continue pushing RT tasks off the current runqueue until we don't push any
more. The algorithm stops when the next highest RT task can't preempt any
other processes on other CPUS.
TODO: The algorithm may stop when there are still RT tasks that can be
migrated. Specifically, if the highest non running RT task CPU affinity
is restricted to CPUs that are running higher priority tasks, there may
be a lower priority task queued that has an affinity with a CPU that is
running a lower priority task that it could be migrated to. This
patch set does not address this issue.
Note: checkpatch reveals two over 80 character instances. I'm not sure
that breaking them up will help visually, so I left them as is.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch adds accounting to each runqueue to keep track of the
highest prio task queued on the run queue. We only care about
RT tasks, so if the run queue does not contain any active RT tasks
its priority will be considered MAX_RT_PRIO.
This information will be used for later patches.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch adds accounting to keep track of the number of RT tasks running
on a runqueue. This information will be used in later patches.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch changes how the cpu load exerted by fair_sched_class tasks
is calculated. Load exerted by fair_sched_class tasks on a cpu is now
a summation of the group weights, rather than summation of task weights.
Weight exerted by a group on a cpu is dependent on the shares allocated
to it.
This version of patch has a minor impact on code size, but should have
no runtime/functional impact for !CONFIG_FAIR_GROUP_SCHED.
Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Realtime tasks would not account their runtime during ticks. Which would lead
to:
struct sched_param param = { .sched_priority = 10 };
pthread_setschedparam(pthread_self(), SCHED_FIFO, ¶m);
while (1) ;
Not showing up in top.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Commit cfb5285660 removed a useful feature for
us, which provided a cpu accounting resource controller. This feature would be
useful if someone wants to group tasks only for accounting purpose and doesnt
really want to exercise any control over their cpu consumption.
The patch below reintroduces the feature. It is based on Paul Menage's
original patch (Commit 62d0df6406), with
these differences:
- Removed load average information. I felt it needs more thought (esp
to deal with SMP and virtualized platforms) and can be added for
2.6.25 after more discussions.
- Convert group cpu usage to be nanosecond accurate (as rest of the cfs
stats are) and invoke cpuacct_charge() from the respective scheduler
classes
- Make accounting scalable on SMP systems by splitting the usage
counter to be per-cpu
- Move the code from kernel/cpu_acct.c to kernel/sched.c (since the
code is not big enough to warrant a new file and also this rightly
needs to live inside the scheduler. Also things like accessing
rq->lock while reading cpu usage becomes easier if the code lived in
kernel/sched.c)
The patch also modifies the cpu controller not to provide the same accounting
information.
Tested-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Tested the patches on top of 2.6.24-rc3. The patches work fine. Ran
some simple tests like cpuspin (spin on the cpu), ran several tasks in
the same group and timed them. Compared their time stamps with
cpuacct.usage.
Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
At the moment, a lot of load balancing code that is irrelevant to non
SMP systems gets included during non SMP builds.
This patch addresses this issue and reduces the binary size on non
SMP systems:
text data bss dec hex filename
10983 28 1192 12203 2fab sched.o.before
10739 28 1192 11959 2eb7 sched.o.after
Signed-off-by: Peter Williams <pwil3058@bigpond.net.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
At the moment, balance_tasks() provides low level functionality for both
move_tasks() and move_one_task() (indirectly) via the load_balance()
function (in the sched_class interface) which also provides dual
functionality. This dual functionality complicates the interfaces and
internal mechanisms and makes the run time overhead of operations that
are called with two run queue locks held.
This patch addresses this issue and reduces the overhead of these
operations.
Signed-off-by: Peter Williams <pwil3058@bigpond.net.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
- make timeslices of SCHED_RR tasks constant and not
dependent on task's static_prio [1] ;
- remove obsolete code (timeslice related bits);
- make sched_rr_get_interval() return something more
meaningful [2] for SCHED_OTHER tasks.
[1] according to the following link, it's not compliant with SUSv3
(not sure though, what is the reference for us :-)
http://lkml.org/lkml/2007/3/7/656
[2] the interval is dynamic and can be depicted as follows "should a
task be one of the runnable tasks at this particular moment, it would
expect to run for this interval of time before being re-scheduled by the
scheduler tick".
(i.e. it's more precise if a task is runnable at the moment)
yeah, this seems to require task_rq_lock/unlock() but this is not a hot
path.
results:
(SCHED_FIFO)
dimm@earth:~/storage/prog$ sudo chrt -f 10 ./rr_interval
time_slice: 0 : 0
(SCHED_RR)
dimm@earth:~/storage/prog$ sudo chrt 10 ./rr_interval
time_slice: 0 : 99984800
(SCHED_NORMAL)
dimm@earth:~/storage/prog$ ./rr_interval
time_slice: 0 : 19996960
(SCHED_NORMAL + a cpu_hog of similar 'weight' on the same CPU --- so should be a half of the previous result)
dimm@earth:~/storage/prog$ taskset 1 ./rr_interval
time_slice: 0 : 9998480
Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
mark scheduling classes as const. The speeds up the code
a bit and shrinks it:
text data bss dec hex filename
40027 4018 292 44337 ad31 sched.o.before
40190 3842 292 44324 ad24 sched.o.after
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
the 'p' (task_struct) parameter in the sched_class :: yield_task() is
redundant as the caller is always the 'current'. Get rid of it.
text data bss dec hex filename
24341 2734 20 27095 69d7 sched.o.before
24330 2734 20 27084 69cc sched.o.after
Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Add interface to control cpu bandwidth allocation to task-groups.
(not yet configurable, due to missing CONFIG_CONTAINERS)
Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Mitchell Erblich suggested a quality-of-implementation change to
not requeue SCHED_RR tasks if there's only a single task on the
runqueue, by checking for rq->nr_running == 1.
provide a more efficient implementation of that, to check that
particular RT priority-queue only.
[ From: mingo@elte.hu ]
Also first requeue the task then set need_resched - results in slightly
better machine-instruction ordering. Also clean up the code a bit.
Signed-off-by: Dmitry Adamushko <dmitry.adamushko@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
remove the 'u64 now' parameter from ->put_prev_task().
( identity transformation that causes no change in functionality. )
Signed-off-by: Ingo Molnar <mingo@elte.hu>
remove the 'u64 now' parameter from ->pick_next_task().
( identity transformation that causes no change in functionality. )
Signed-off-by: Ingo Molnar <mingo@elte.hu>
remove the 'u64 now' parameter from ->dequeue_task().
( identity transformation that causes no change in functionality. )
Signed-off-by: Ingo Molnar <mingo@elte.hu>
remove the 'u64 now' parameter from ->enqueue_task().
( identity transformation that causes no change in functionality. )
Signed-off-by: Ingo Molnar <mingo@elte.hu>
remove the 'u64 now' parameter from update_curr_rt().
( identity transformation that causes no change in functionality. )
Signed-off-by: Ingo Molnar <mingo@elte.hu>