* 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6: (179 commits)
ACPI: Fix acpi_processor_idle and idle= boot parameters interaction
acpi: fix section mismatch warning in pnpacpi
intel_menlo: fix build warning
ACPI: Cleanup: Remove unneeded, multiple local dummy variables
ACPI: video - fix permissions on some proc entries
ACPI: video - properly handle errors when registering proc elements
ACPI: video - do not store invalid entries in attached_array list
ACPI: re-name acpi_pm_ops to acpi_suspend_ops
ACER_WMI/ASUS_LAPTOP: fix build bug
thinkpad_acpi: fix possible NULL pointer dereference if kstrdup failed
ACPI: check a return value correctly in acpi_power_get_context()
#if 0 acpi/bay.c:eject_removable_drive()
eeepc-laptop: add hwmon fan control
eeepc-laptop: add backlight
eeepc-laptop: add base driver
ACPI: thinkpad-acpi: bump up version to 0.20
ACPI: thinkpad-acpi: fix selects in Kconfig
ACPI: thinkpad-acpi: use a private workqueue
ACPI: thinkpad-acpi: fluff really minor fix
ACPI: thinkpad-acpi: use uppercase for "LED" on user documentation
...
Fixed conflicts in drivers/acpi/video.c and drivers/misc/intel_menlow.c
manually.
acpi_processor_idle and "idle=" boot parameter interaction is broken.
The problem is that, at boot time acpi driver is checking for "idle=" boot
option and not registering the acpi idle handler. But, when there is a CST
changed callback (typically when switching AC <-> battery or suspend-resume)
there are no checks for boot_option_idle_override and acpi idle handler tries
to get installed with nasty side effects.
With CPU_IDLE configured this issue causes results in a nasty oops on CST
change callback and without CPU_IDLE there is no oops, but boot option
of "idle=" gets ignored and acpi idle handler gets installed.
Change the behavior to not do anything in acpi idle handler when there is a
"idle=" boot option.
Note that the problem is only there when "idle=" boot option is used.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
OK, so 25-mm1 gave a lockdep error which made me look into this.
The first thing that I noticed was the horrible mess; the second thing I
saw was hacks like: 71e93d1561
The problem is that arch idle routines are somewhat inconsitent with
their IRQ state handling and instead of fixing _that_, we go paper over
the problem.
So the thing I've tried to do is set a standard for idle routines and
fix them all up to adhere to that. So the rules are:
idle routines are entered with IRQs disabled
idle routines will exit with IRQs enabled
Nearly all already did this in one form or another.
Merge the 32 and 64 bit bits so they no longer have different bugs.
As for the actual lockdep warning; __sti_mwait() did a plainly un-annotated
irq-enable.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Tested-by: Bob Copeland <me@bobcopeland.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Patch to fix huge number of wakeups reported due to recent changes in
processor_idle.c. The problem was that the entry_method determination was
broken due to one of the recent commits (bc71bec91f) causing
C1 entry to not to go to halt.
http://lkml.org/lkml/2008/3/22/124
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
commit 9b12e18cdc
'ACPI: cpuidle: Support C1 idle time accounting'
was implicated in a 100% C0 idle regression.
http://bugzilla.kernel.org/show_bug.cgi?id=10076
It pointed out a potential problem where the menu governor
may get confused by the C-state residency time from poll
idle or C1 idle, where this timing info is not accurate.
This inaccuracy is due to interrupts being handled
before we account for C-state exit.
Do not mark TIME_VALID for CO poll state.
Mark C1 time as valid only with the MWAIT (CSTATE_FFH) entry method.
This makes governors use the timing information only when it is correct and
eliminates any wrong policy decisions that may result from invalid timing
information.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
This original patch
http://ussg.iu.edu/hypermail/linux/kernel/0712.2/1451.html
was intending to add acpi_unlazy_tlb() to acpi_idle_enter_bm(),
which is used for C3 entry.
But it was merged incorrectly as commmit
bde6f5f59c
'x86: voluntary leave_mm before entering ACPI C3'
so the call was instead added to acpi_idle_enter_simple()
(which is C2 entry routine), probably due to identical
context in that function.
Move the call back to acpi_idle_enter_bm().
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
TSC is used even on machines when CONFIG_X86_TSC is not set (X86_TSC
means _require_ TSC), but it is not properly disabled when it is
unusable, because ACPI code understood the config switch as "may use
TSC".
This actually fixes suspend problems on my x60.
Signed-off-by: Pavel Machek <pavel@suse.cz>
Signed-off-by: Len Brown <len.brown@intel.com>
Add a new sysfs entry under cpuidle states. desc - can be used by driver to
communicate to userspace any specific information about the state.
This helps in identifying the exact hardware C-states behind the ACPI C-state
definition.
Idea is to export this through powertop, which will help to map the C-state
reported by powertop to actual hardware C-state.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Earlier patch (bc71bec91f) broke
suspend resume on many laptops. The problem was reported by
Carlos R. Mafra and Calvin Walton, who bisected the issue to above patch.
The problem was because, C2 and C3 code were calling acpi_idle_enter_c1
directly, with C2 or C3 as state parameter, while suspend/resume was in
progress. The patch bc71bec started making use of that state information,
assuming that it would always be referring to C1 state. This caused the
problem with suspend-resume as we ended up using C2/C3 state indirectly.
Fix this by adding acpi_idle_suspend check in enter_c1.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Add a default poll idle state with 0 latency. Provides an option to users
to use poll_idle by using 0 as the latency requirement.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Show C1 idle time in /sysfs cpuidle interface. C1 idle time may not
be entirely accurate in all cases. It includes the time spent
in the interrupt handler after wakeup with "hlt" based C1. But, it will
be accurate with "mwait" based C1.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Add MWAIT idle for C1 state instead of halt, on platforms that support
C1 state with MWAIT.
Renames cx->space_id to something more appropriate.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
acpi_safe_halt() needs interrupts to be disabled for atomic
need_resched check and safe halt. Otherwise we may miss an
interrupt and go into halt.
acpi_safe_halt() also does not enable interrupts on all return paths.
So the callers should handle enable and disable interrupts around it.
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
The ACPI code currently disables TSC use in any C2 and C3
states. But the AMD Fam10h BKDG documents that the TSC
will never stop in any C states when the CONSTANT_TSC bit is
set. Make this disabling conditional on CONSTANT_TSC
not set on AMD.
I actually think this is true on Intel too for C2 states
on CPUs with p-state invariant TSC, but this needs
further discussions with Len to really confirm :-)
So far it is only enabled on AMD.
Cc: lenb@kernel.org
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Aviod TLB flush IPIs during C3 states by voluntary leave_mm()
before entering C3.
The performance impact of TLB flush on C3 should not be significant with
respect to C3 wakeup latency. Also, CPUs tend to flush TLB in hardware while in
C3 anyways.
On a 8 logical CPU system, running make -j2, the number of tlbflush IPIs goes
down from 40 per second to ~ 0. Total number of interrupts during the run
of this workload was ~1200 per second, which makes it ~3% savings in wakeups.
There was no measurable performance or power impact however.
[ akpm@linux-foundation.org: symbol export fixes. ]
Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
More aggressively request deep C-states.
Note that the job of the OS is to minimize latency
impact to expected break events such as interrupts.
It is not the job of the OS to try to calculate if
the C-state will reach energy break-even.
The platform doesn't give the OS enough information
for it to make that calculation. Thus, it is up
to the platform to decide if it is worth it to
go as deep as the OS requested it to, or if it
should internally demote to a more shallow C-state.
But the converse is not true. The platform can not
promote into a deeper C-state than the OS requested
else it may violate latency constraints. So it is
important that the OS be aggressive in giving the
platform permission to enter deep C-states.
Signed-off-by: Len Brown <len.brown@intel.com>
The timer broadcast code might access HPET, which should not be
accessed after the busmaster disable.
In acpi_idle_enter_simple() this change also prevents, that we modify
the busmaster state without going actually idle. This might leave the
ACPI bm state in a stale state, when we leave the function early in
the need_resched() check.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>