When a cpu really is stuck in the kernel, it can be often
impossible to figure out which cpu is stuck where. The
worst case is when the stuck cpu has interrupts disabled.
Therefore, implement a global cpu state capture that uses
SMP message interrupts which are not disabled by the
normal IRQ enable/disable APIs of the kernel.
As long as we can get a sysrq 'y' to the kernel, we can
get a dump. Even if the console interrupt cpu is wedged,
we can trigger it from userspace using /proc/sysrq-trigger
The output is made compact so that this facility is more
useful on high cpu count systems, which is where this
facility will likely find itself the most useful :)
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch removes the CVS keywords that weren't updated for a long time
from comments.
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This fixes the missing ram regression reported by
Mikael Pettersson <mikpe@it.uu.se>, much thanks for
all of this help in diagnosing this.
The second argument to lmb_reserve() is a size,
not an end address bounds.
Tested-by: Mikael Pettersson <mikpe@it.uu.se>
Signed-off-by: David S. Miller <davem@davemloft.net>
Read all of the OF memory and translation tables, then read
the physical available memory list twice.
When making these requests, OF can allocate more memory to
do it's job, which can remove pages from the available
memory list.
So fetch in all of the tables at once, and fetch the available
list last to make sure we read a stable value.
Signed-off-by: David S. Miller <davem@davemloft.net>
We die because we forget to convert initrd_start and
initrd_end to virtual addresses.
Reported by Mikael Pettersson
Signed-off-by: David S. Miller <davem@davemloft.net>
The identical online_page() implementations from all architectures got
moved to mm/memory_hotplug.c - except for the sparc64 one that even was
dead code due to MEMORY_HOTPLUG not being available there.
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Current limitations:
1) On SMP single stepping has some fundamental issues,
shared with other sw single-step architectures such
as mips and arm.
2) On 32-bit sparc we don't support SMP kgdb yet. That
requires some reworking of the IPI mechanisms and
infrastructure on that platform.
Signed-off-by: David S. Miller <davem@davemloft.net>
Now that we indicate the "restart system call" in the
trap type field of pt_regs->magic, we don't need to
set the %l6 boolean in all of the trap return paths.
And we therefore don't need to pass it to do_notify_resume().
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently there is only code to parse NUMA attributes on
sun4v/niagara systems, but later on we will add such parsing
for older systems.
Signed-off-by: David S. Miller <davem@davemloft.net>
We have to do it like this before we can move the PROM and MDESC device
tree code over to using lmb_alloc().
Signed-off-by: David S. Miller <davem@davemloft.net>
Call lmb_add() on available regions, and call lmb_reserve()
on the main kernel image and the ramdisk (if any).
Signed-off-by: David S. Miller <davem@davemloft.net>
And add some comments explaining all of the quirks involved in
the way the bootloader provides this information.
Signed-off-by: David S. Miller <davem@davemloft.net>
ext4 uses ZERO_PAGE(0) to zero out blocks. We need to export
different symbols in different arches for the usage of ZERO_PAGE
in modules.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
NR_PAGEFLAGS specifies the number of page flags we are using. From that we
can calculate the number of bits leftover that can be used for zone, node (and
maybe the sections id). There is no need anymore for FLAGS_RESERVED if we use
NR_PAGEFLAGS.
Use the new methods to make NR_PAGEFLAGS available via the preprocessor.
NR_PAGEFLAGS is used to calculate field boundaries in the page flags fields.
These field widths have to be available to the preprocessor.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: David Miller <davem@davemloft.net>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add 'UL' markers to DCU_* macros.
Declare C functions called from assembler in entry.h
Declare C functions called from within the sparc64 arch
code in include/asm-sparc64/*.h headers as appropriate.
Remove unused routines in traps.c
Signed-off-by: David S. Miller <davem@davemloft.net>
We create a local header file entry.h, under arch/sparc64/kernel/,
that we can use to declare routines either defined in assembler
or only invoked from assembler. As well as other data objects
which are private to the inner sparc64 kernel arch code.
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently kernel images are limited to 8MB in size, and this causes
problems especially when enabling features that take up a lot of
kernel image space such as lockdep.
The code now will align the kernel image size up to 4MB and map that
many locked TLB entries. So, the only practical limitation is the
number of available locked TLB entries which is 16 on Cheetah and 64
on pre-Cheetah sparc64 cpus. Niagara cpus don't actually have hw
locked TLB entry support. Rather, the hypervisor transparently
provides support for "locked" TLB entries since it runs with physical
addressing and does the initial TLB miss processing.
Fully utilizing this change requires some help from SILO, a patch for
which will be submitted to the maintainer. Essentially, SILO will
only currently map up to 8MB for the kernel image and that needs to be
increased.
Note that neither this patch nor the SILO bits will help with network
booting. The openfirmware code will only map up to a certain amount
of kernel image during a network boot and there isn't much we can to
about that other than to implemented a layered network booting
facility. Solaris has this, and calls it "wanboot" and we may
implement something similar at some point.
Signed-off-by: David S. Miller <davem@davemloft.net>