Pull module update from Rusty Russell:
"Nothing all that exciting; a new module-from-fd syscall for those who
want to verify the source of the module (ChromeOS) and/or use standard
IMA on it or other security hooks."
* tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux:
MODSIGN: Fix kbuild output when using default extra_certificates
MODSIGN: Avoid using .incbin in C source
modules: don't hand 0 to vmalloc.
module: Remove a extra null character at the top of module->strtab.
ASN.1: Use the ASN1_LONG_TAG and ASN1_INDEFINITE_LENGTH constants
ASN.1: Define indefinite length marker constant
moduleparam: use __UNIQUE_ID()
__UNIQUE_ID()
MODSIGN: Add modules_sign make target
powerpc: add finit_module syscall.
ima: support new kernel module syscall
add finit_module syscall to asm-generic
ARM: add finit_module syscall to ARM
security: introduce kernel_module_from_file hook
module: add flags arg to sys_finit_module()
module: add syscall to load module from fd
In commit 9c0ece069b ("Get rid of Documentation/feature-removal.txt"),
Linus removed feature-removal-schedule.txt from Documentation, but there
is still some reference to this file. So remove them.
Signed-off-by: Tao Ma <boyu.mt@taobao.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In commit d0a21265df David Rientjes unified various archs'
module_alloc implementation (including x86) and removed the graduitous
shortcut for size == 0.
Then, in commit de7d2b567d, Joe Perches added a warning for
zero-length vmallocs, which can happen without kallsyms on modules
with no init sections (eg. zlib_deflate).
Fix this once and for all; the module code has to handle zero length
anyway, so get it right at the caller and remove the now-gratuitous
checks within the arch-specific module_alloc implementations.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=42608
Reported-by: Conrad Kostecki <ConiKost@gmx.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Joe Perches <joe@perches.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
There is a extra null character('\0') at the top of module->strtab for
each module. Commit 59ef28b introduced this bug and this patch fixes it.
Live dump log of the current linus git kernel(HEAD is 2844a4870):
============================================================================
crash> mod | grep loop
ffffffffa01db0a0 loop 16689 (not loaded) [CONFIG_KALLSYMS]
crash> module.core_symtab ffffffffa01db0a0
core_symtab = 0xffffffffa01db320crash> rd 0xffffffffa01db320 12
ffffffffa01db320: 0000005500000001 0000000000000000 ....U...........
ffffffffa01db330: 0000000000000000 0002007400000002 ............t...
ffffffffa01db340: ffffffffa01d8000 0000000000000038 ........8.......
ffffffffa01db350: 001a00640000000e ffffffffa01daeb0 ....d...........
ffffffffa01db360: 00000000000000a0 0002007400000019 ............t...
ffffffffa01db370: ffffffffa01d8068 000000000000001b h...............
crash> module.core_strtab ffffffffa01db0a0
core_strtab = 0xffffffffa01dbb30 ""
crash> rd 0xffffffffa01dbb30 4
ffffffffa01dbb30: 615f70616d6b0000 66780063696d6f74 ..kmap_atomic.xf
ffffffffa01dbb40: 73636e75665f7265 72665f646e696600 er_funcs.find_fr
============================================================================
We expect Just first one byte of '\0', but actually first two bytes
are '\0'. Here is The relationship between symtab and strtab.
symtab_idx strtab_idx symbol
-----------------------------------------------
0 0x1 "\0" # startab_idx should be 0
1 0x2 "kmap_atomic"
2 0xe "xfer_funcs"
3 0x19 "find_fr..."
By applying this patch, it becomes as follows.
symtab_idx strtab_idx symbol
-----------------------------------------------
0 0x0 "\0" # extra byte is removed
1 0x1 "kmap_atomic"
2 0xd "xfer_funcs"
3 0x18 "find_fr..."
Signed-off-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com>
Cc: Masaki Kimura <masaki.kimura.kz@hitachi.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Now that kernel module origins can be reasoned about, provide a hook to
the LSMs to make policy decisions about the module file. This will let
Chrome OS enforce that loadable kernel modules can only come from its
read-only hash-verified root filesystem. Other LSMs can, for example,
read extended attributes for signatures, etc.
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Serge E. Hallyn <serge.hallyn@canonical.com>
Acked-by: Eric Paris <eparis@redhat.com>
Acked-by: Mimi Zohar <zohar@us.ibm.com>
Acked-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Thanks to Michael Kerrisk for keeping us honest. These flags are actually
useful for eliminating the only case where kmod has to mangle a module's
internals: for overriding module versioning.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Acked-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
Acked-by: Kees Cook <keescook@chromium.org>
As part of the effort to create a stronger boundary between root and
kernel, Chrome OS wants to be able to enforce that kernel modules are
being loaded only from our read-only crypto-hash verified (dm_verity)
root filesystem. Since the init_module syscall hands the kernel a module
as a memory blob, no reasoning about the origin of the blob can be made.
Earlier proposals for appending signatures to kernel modules would not be
useful in Chrome OS, since it would involve adding an additional set of
keys to our kernel and builds for no good reason: we already trust the
contents of our root filesystem. We don't need to verify those kernel
modules a second time. Having to do signature checking on module loading
would slow us down and be redundant. All we need to know is where a
module is coming from so we can say yes/no to loading it.
If a file descriptor is used as the source of a kernel module, many more
things can be reasoned about. In Chrome OS's case, we could enforce that
the module lives on the filesystem we expect it to live on. In the case
of IMA (or other LSMs), it would be possible, for example, to examine
extended attributes that may contain signatures over the contents of
the module.
This introduces a new syscall (on x86), similar to init_module, that has
only two arguments. The first argument is used as a file descriptor to
the module and the second argument is a pointer to the NULL terminated
string of module arguments.
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (merge fixes)
Masaki found and patched a kallsyms issue: the last symbol in a
module's symtab wasn't transferred. This is because we manually copy
the zero'th entry (which is always empty) then copy the rest in a loop
starting at 1, though from src[0]. His fix was minimal, I prefer to
rewrite the loops in more standard form.
There are two loops: one to get the size, and one to copy. Make these
identical: always count entry 0 and any defined symbol in an allocated
non-init section.
This bug exists since the following commit was introduced.
module: reduce symbol table for loaded modules (v2)
commit: 4a4962263f
LKML: http://lkml.org/lkml/2012/10/24/27
Reported-by: Masaki Kimura <masaki.kimura.kz@hitachi.com>
Cc: stable@kernel.org
Emit the magic string that indicates a module has a signature after the
signature data instead of before it. This allows module_sig_check() to
be made simpler and faster by the elimination of the search for the
magic string. Instead we just need to do a single memcmp().
This works because at the end of the signature data there is the
fixed-length signature information block. This block then falls
immediately prior to the magic number.
From the contents of the information block, it is trivial to calculate
the size of the signature data and thus the size of the actual module
data.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If we're in FIPS mode, we should panic if we fail to verify the signature on a
module or we're asked to load an unsigned module in signature enforcing mode.
Possibly FIPS mode should automatically enable enforcing mode.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We do a very simple search for a particular string appended to the module
(which is cache-hot and about to be SHA'd anyway). There's both a config
option and a boot parameter which control whether we accept or fail with
unsigned modules and modules that are signed with an unknown key.
If module signing is enabled, the kernel will be tainted if a module is
loaded that is unsigned or has a signature for which we don't have the
key.
(Useful feedback and tweaks by David Howells <dhowells@redhat.com>)
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
The original module-init-tools module loader used a fnctl lock on the
.ko file to avoid attempts to simultaneously load a module.
Unfortunately, you can't get an exclusive fcntl lock on a read-only
fd, making this not work for read-only mounted filesystems.
module-init-tools has a hacky sleep-and-loop for this now.
It's not that hard to wait in the kernel, and only return -EEXIST once
the first module has finished loading (or continue loading the module
if the first one failed to initialize for some reason). It's also
consistent with what we do for dependent modules which are still loading.
Suggested-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We use resolve_symbol_wait(), which blocks if the module containing
the symbol is still loading. However:
1) The module_wq we use is only woken after calling the modules' init
function, but there are other failure paths after the module is
placed in the linked list where we need to do the same thing.
2) wake_up() only wakes one waiter, and our waitqueue is shared by all
modules, so we need to wake them all.
3) wake_up_all() doesn't imply a memory barrier: I feel happier calling
it after we've grabbed and dropped the module_mutex, not just after
the state assignment.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Use the mapping of Elf_[SPE]hdr, Elf_Addr, Elf_Sym, Elf_Dyn, Elf_Rel/Rela,
ELF_R_TYPE() and ELF_R_SYM() to either the 32-bit version or the 64-bit version
into asm-generic/module.h for all arches bar MIPS.
Also, use the generic definition mod_arch_specific where possible.
To this end, I've defined three new config bools:
(*) HAVE_MOD_ARCH_SPECIFIC
Arches define this if they don't want to use the empty generic
mod_arch_specific struct.
(*) MODULES_USE_ELF_RELA
Arches define this if their modules can contain RELA records. This causes
the Elf_Rela mapping to be emitted and allows apply_relocate_add() to be
defined by the arch rather than have the core emit an error message.
(*) MODULES_USE_ELF_REL
Arches define this if their modules can contain REL records. This causes
the Elf_Rel mapping to be emitted and allows apply_relocate() to be
defined by the arch rather than have the core emit an error message.
Note that it is possible to allow both REL and RELA records: m68k and mips are
two arches that do this.
With this, some arch asm/module.h files can be deleted entirely and replaced
with a generic-y marker in the arch Kbuild file.
Additionally, I have removed the bits from m32r and score that handle the
unsupported type of relocation record as that's now handled centrally.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cloudlinux have a product called lve that includes a kernel module. This
was previously GPLed but is now under a proprietary license, but the
module continues to declare MODULE_LICENSE("GPL") and makes use of some
EXPORT_SYMBOL_GPL symbols. Forcibly taint it in order to avoid this.
Signed-off-by: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Alex Lyashkov <umka@cloudlinux.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: stable@kernel.org
The check:
if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr))
may not work if there's an overflow in the right-hand side of the condition.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This introduces a fake module param $module.dyndbg. Its based upon
Thomas Renninger's $module.ddebug boot-time debugging patch from
https://lkml.org/lkml/2010/9/15/397
The 'fake' module parameter is provided for all modules, whether or
not they need it. It is not explicitly added to each module, but is
implemented in callbacks invoked from parse_args.
For builtin modules, dynamic_debug_init() now directly calls
parse_args(..., &ddebug_dyndbg_boot_params_cb), to process the params
undeclared in the modules, just after the ddebug tables are processed.
While its slightly weird to reprocess the boot params, parse_args() is
already called repeatedly by do_initcall_levels(). More importantly,
the dyndbg queries (given in ddebug_query or dyndbg params) cannot be
activated until after the ddebug tables are ready, and reusing
parse_args is cleaner than doing an ad-hoc parse. This reparse would
break options like inc_verbosity, but they probably should be params,
like verbosity=3.
ddebug_dyndbg_boot_params_cb() handles both bare dyndbg (aka:
ddebug_query) and module-prefixed dyndbg params, and ignores all other
parameters. For example, the following will enable pr_debug()s in 4
builtin modules, in the order given:
dyndbg="module params +p; module aio +p" module.dyndbg=+p pci.dyndbg
For loadable modules, parse_args() in load_module() calls
ddebug_dyndbg_module_params_cb(). This handles bare dyndbg params as
passed from modprobe, and errors on other unknown params.
Note that modprobe reads /proc/cmdline, so "modprobe foo" grabs all
foo.params, strips the "foo.", and passes these to the kernel.
ddebug_dyndbg_module_params_cb() is again called for the unknown
params; it handles dyndbg, and errors on others. The "doing" arg
added previously contains the module name.
For non CONFIG_DYNAMIC_DEBUG builds, the stub function accepts
and ignores $module.dyndbg params, other unknowns get -ENOENT.
If no param value is given (as in pci.dyndbg example above), "+p" is
assumed, which enables all pr_debug callsites in the module.
The dyndbg fake parameter is not shown in /sys/module/*/parameters,
thus it does not use any resources. Changes to it are made via the
control file.
Also change pr_info in ddebug_exec_queries to vpr_info,
no need to see it all the time.
Signed-off-by: Jim Cromie <jim.cromie@gmail.com>
CC: Thomas Renninger <trenn@suse.de>
CC: Rusty Russell <rusty@rustcorp.com.au>
Acked-by: Jason Baron <jbaron@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Module size was limited to 64MB, this was legacy limitation due to vmalloc()
which was removed a while ago.
Limiting module size to 64MB is both pointless and affects real world use
cases.
Cc: Tim Abbott <tim.abbott@oracle.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This patch adds a set of macros that can be used to declare
kernel parameters to be parsed _before_ initcalls at a chosen
level are executed. We rename the now-unused "flags" field of
struct kernel_param as the level. It's signed, for when we
use this for early params as well, in future.
Linker macro collating init calls had to be modified in order
to add additional symbols between levels that are later used
by the init code to split the calls into blocks.
Signed-off-by: Pawel Moll <pawel.moll@arm.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Sometimes we need to test a kernel of same version with code or config
option changes.
We already have sysctl to disable module load, but add a kernel
parameter will be more convenient.
Since modules_disabled is int, so here use bint type in core_param.
TODO: make sysctl accept bool and change modules_disabled to bool
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Recent changes to kernel/module.c caused the following compile
error:
kernel/module.c: In function ‘show_taint’:
kernel/module.c:1024:2: error: implicit declaration of function ‘module_flags_taint’ [-Werror=implicit-function-declaration]
cc1: some warnings being treated as errors
Correct this error by moving the definition of module_flags_taint
outside of the #ifdef CONFIG_MODULE_UNLOAD section.
Signed-off-by: Kevin Winchester <kjwinchester@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Recent tools do not want to use /proc to retrieve module information. A few
values are currently missing from sysfs to replace the information available
in /proc/modules.
This adds /sys/module/*/{coresize,initsize,taint} attributes.
TAINT_PROPRIETARY_MODULE (P) and TAINT_OOT_MODULE (O) flags are both always
shown now, and do no longer exclude each other, also in /proc/modules.
Replace the open-coded sysfs attribute initializers with the __ATTR() macro.
Add the new attributes to Documentation/ABI.
Cc: Lucas De Marchi <lucas.demarchi@profusion.mobi>
Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Use more flexible pr_debug. This allows:
echo "module module +p" > /dbg/dynamic_debug/control
to turn on debug messages when needed.
Signed-off-by: Jim Cromie <jim.cromie@gmail.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
module_ref contains two "unsigned int" fields.
Thats now too small, since some machines can open more than 2^32 files.
Check commit 518de9b39e (fs: allow for more than 2^31 files) for
reference.
We can add an aligned(2 * sizeof(unsigned long)) attribute to force
alloc_percpu() allocating module_ref areas in single cache lines.
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
CC: Rusty Russell <rusty@rustcorp.com.au>
CC: Tejun Heo <tj@kernel.org>
CC: Robin Holt <holt@sgi.com>
CC: David Miller <davem@davemloft.net>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>