Commit Graph

2248 Commits

Author SHA1 Message Date
Wen Yang
77cc52f1b8 tick/rcu: Fix bogus ratelimit condition
[ Upstream commit a7e282c77785c7eabf98836431b1f029481085ad ]

The ratelimit logic in report_idle_softirq() is broken because the
exit condition is always true:

	static int ratelimit;

	if (ratelimit < 10)
		return false;  ---> always returns here

	ratelimit++;           ---> no chance to run

Make it check for >= 10 instead.

Fixes: 0345691b24 ("tick/rcu: Stop allowing RCU_SOFTIRQ in idle")
Signed-off-by: Wen Yang <wenyang.linux@foxmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/tencent_5AAA3EEAB42095C9B7740BE62FBF9A67E007@qq.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-19 16:20:59 +02:00
Thomas Gleixner
e7aff15ba2 posix-timers: Prevent RT livelock in itimer_delete()
[ Upstream commit 9d9e522010eb5685d8b53e8a24320653d9d4cbbf ]

itimer_delete() has a retry loop when the timer is concurrently expired. On
non-RT kernels this just spin-waits until the timer callback has completed,
except for posix CPU timers which have HAVE_POSIX_CPU_TIMERS_TASK_WORK
enabled.

In that case and on RT kernels the existing task could live lock when
preempting the task which does the timer delivery.

Replace spin_unlock() with an invocation of timer_wait_running() to handle
it the same way as the other retry loops in the posix timer code.

Fixes: ec8f954a40 ("posix-timers: Use a callback for cancel synchronization on PREEMPT_RT")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/87v8g7c50d.ffs@tglx
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-19 16:20:59 +02:00
Thomas Gleixner
0c6552f837 tick/common: Align tick period during sched_timer setup
commit 13bb06f8dd42071cb9a49f6e21099eea05d4b856 upstream.

The tick period is aligned very early while the first clock_event_device is
registered. At that point the system runs in periodic mode and switches
later to one-shot mode if possible.

The next wake-up event is programmed based on the aligned value
(tick_next_period) but the delta value, that is used to program the
clock_event_device, is computed based on ktime_get().

With the subtracted offset, the device fires earlier than the exact time
frame. With a large enough offset the system programs the timer for the
next wake-up and the remaining time left is too small to make any boot
progress. The system hangs.

Move the alignment later to the setup of tick_sched timer. At this point
the system switches to oneshot mode and a high resolution clocksource is
available. At this point it is safe to align tick_next_period because
ktime_get() will now return accurate (not jiffies based) time.

[bigeasy: Patch description + testing].

Fixes: e9523a0d81899 ("tick/common: Align tick period with the HZ tick.")
Reported-by: Mathias Krause <minipli@grsecurity.net>
Reported-by: "Bhatnagar, Rishabh" <risbhat@amazon.com>
Suggested-by: Mathias Krause <minipli@grsecurity.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Richard W.M. Jones <rjones@redhat.com>
Tested-by: Mathias Krause <minipli@grsecurity.net>
Acked-by: SeongJae Park <sj@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/5a56290d-806e-b9a5-f37c-f21958b5a8c0@grsecurity.net
Link: https://lore.kernel.org/12c6f9a3-d087-b824-0d05-0d18c9bc1bf3@amazon.com
Link: https://lore.kernel.org/r/20230615091830.RxMV2xf_@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-06-28 11:12:18 +02:00
Thomas Gleixner
a84b08314f tick/broadcast: Make broadcast device replacement work correctly
[ Upstream commit f9d36cf445ffff0b913ba187a3eff78028f9b1fb ]

When a tick broadcast clockevent device is initialized for one shot mode
then tick_broadcast_setup_oneshot() OR's the periodic broadcast mode
cpumask into the oneshot broadcast cpumask.

This is required when switching from periodic broadcast mode to oneshot
broadcast mode to ensure that CPUs which are waiting for periodic
broadcast are woken up on the next tick.

But it is subtly broken, when an active broadcast device is replaced and
the system is already in oneshot (NOHZ/HIGHRES) mode. Victor observed
this and debugged the issue.

Then the OR of the periodic broadcast CPU mask is wrong as the periodic
cpumask bits are sticky after tick_broadcast_enable() set it for a CPU
unless explicitly cleared via tick_broadcast_disable().

That means that this sets all other CPUs which have tick broadcasting
enabled at that point unconditionally in the oneshot broadcast mask.

If the affected CPUs were already idle and had their bits set in the
oneshot broadcast mask then this does no harm. But for non idle CPUs
which were not set this corrupts their state.

On their next invocation of tick_broadcast_enable() they observe the bit
set, which indicates that the broadcast for the CPU is already set up.
As a consequence they fail to update the broadcast event even if their
earliest expiring timer is before the actually programmed broadcast
event.

If the programmed broadcast event is far in the future, then this can
cause stalls or trigger the hung task detector.

Avoid this by telling tick_broadcast_setup_oneshot() explicitly whether
this is the initial switch over from periodic to oneshot broadcast which
must take the periodic broadcast mask into account. In the case of
initialization of a replacement device this prevents that the broadcast
oneshot mask is modified.

There is a second problem with broadcast device replacement in this
function. The broadcast device is only armed when the previous state of
the device was periodic.

That is correct for the switch from periodic broadcast mode to oneshot
broadcast mode as the underlying broadcast device could operate in
oneshot state already due to lack of periodic state in hardware. In that
case it is already armed to expire at the next tick.

For the replacement case this is wrong as the device is in shutdown
state. That means that any already pending broadcast event will not be
armed.

This went unnoticed because any CPU which goes idle will observe that
the broadcast device has an expiry time of KTIME_MAX and therefore any
CPUs next timer event will be earlier and cause a reprogramming of the
broadcast device. But that does not guarantee that the events of the
CPUs which were already in idle are delivered on time.

Fix this by arming the newly installed device for an immediate event
which will reevaluate the per CPU expiry times and reprogram the
broadcast device accordingly. This is simpler than caching the last
expiry time in yet another place or saving it before the device exchange
and handing it down to the setup function. Replacement of broadcast
devices is not a frequent operation and usually happens once somewhere
late in the boot process.

Fixes: 9c336c9935 ("tick/broadcast: Allow late registered device to enter oneshot mode")
Reported-by: Victor Hassan <victor@allwinnertech.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/87pm7d2z1i.ffs@tglx
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-05-24 17:32:31 +01:00
Geert Uytterhoeven
c2b990d7aa timekeeping: Fix references to nonexistent ktime_get_fast_ns()
[ Upstream commit 158009f1b4a33bc0f354b994eea361362bd83226 ]

There was never a function named ktime_get_fast_ns().
Presumably these should refer to ktime_get_mono_fast_ns() instead.

Fixes: c1ce406e80 ("timekeeping: Fix up function documentation for the NMI safe accessors")
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/r/06df7b3cbd94f016403bbf6cd2b38e4368e7468f.1682516546.git.geert+renesas@glider.be
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-05-11 23:03:35 +09:00
Sebastian Andrzej Siewior
290e26ec0d tick/common: Align tick period with the HZ tick.
[ Upstream commit e9523a0d81899361214d118ad60ef76f0e92f71d ]

With HIGHRES enabled tick_sched_timer() is programmed every jiffy to
expire the timer_list timers. This timer is programmed accurate in
respect to CLOCK_MONOTONIC so that 0 seconds and nanoseconds is the
first tick and the next one is 1000/CONFIG_HZ ms later. For HZ=250 it is
every 4 ms and so based on the current time the next tick can be
computed.

This accuracy broke since the commit mentioned below because the jiffy
based clocksource is initialized with higher accuracy in
read_persistent_wall_and_boot_offset(). This higher accuracy is
inherited during the setup in tick_setup_device(). The timer still fires
every 4ms with HZ=250 but timer is no longer aligned with
CLOCK_MONOTONIC with 0 as it origin but has an offset in the us/ns part
of the timestamp. The offset differs with every boot and makes it
impossible for user land to align with the tick.

Align the tick period with CLOCK_MONOTONIC ensuring that it is always a
multiple of 1000/CONFIG_HZ ms.

Fixes: 857baa87b6 ("sched/clock: Enable sched clock early")
Reported-by: Gusenleitner Klaus <gus@keba.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/20230406095735.0_14edn3@linutronix.de
Link: https://lore.kernel.org/r/20230418122639.ikgfvu3f@linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-05-11 23:03:16 +09:00
Zqiang
ae6803b663 rcu: Fix missing TICK_DEP_MASK_RCU_EXP dependency check
[ Upstream commit db7b464df9d820186e98a65aa6a10f0d51fbf8ce ]

This commit adds checks for the TICK_DEP_MASK_RCU_EXP bit, thus enabling
RCU expedited grace periods to actually force-enable scheduling-clock
interrupts on holdout CPUs.

Fixes: df1e849ae4 ("rcu: Enable tick for nohz_full CPUs slow to provide expedited QS")
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Anna-Maria Behnsen <anna-maria@linutronix.de>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-05-11 23:03:06 +09:00
Joel Fernandes (Google)
3e7b8a723b tick/nohz: Fix cpu_is_hotpluggable() by checking with nohz subsystem
commit 58d7668242647e661a20efe065519abd6454287e upstream.

For CONFIG_NO_HZ_FULL systems, the tick_do_timer_cpu cannot be offlined.
However, cpu_is_hotpluggable() still returns true for those CPUs. This causes
torture tests that do offlining to end up trying to offline this CPU causing
test failures. Such failure happens on all architectures.

Fix the repeated error messages thrown by this (even if the hotplug errors are
harmless) by asking the opinion of the nohz subsystem on whether the CPU can be
hotplugged.

[ Apply Frederic Weisbecker feedback on refactoring tick_nohz_cpu_down(). ]

For drivers/base/ portion:
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Zhouyi Zhou <zhouzhouyi@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: rcu <rcu@vger.kernel.org>
Cc: stable@vger.kernel.org
Fixes: 2987557f52 ("driver-core/cpu: Expose hotpluggability to the rest of the kernel")
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-05-11 23:03:01 +09:00
Thomas Gleixner
bccf9fe296 posix-cpu-timers: Implement the missing timer_wait_running callback
commit f7abf14f0001a5a47539d9f60bbdca649e43536b upstream.

For some unknown reason the introduction of the timer_wait_running callback
missed to fixup posix CPU timers, which went unnoticed for almost four years.
Marco reported recently that the WARN_ON() in timer_wait_running()
triggers with a posix CPU timer test case.

Posix CPU timers have two execution models for expiring timers depending on
CONFIG_POSIX_CPU_TIMERS_TASK_WORK:

1) If not enabled, the expiry happens in hard interrupt context so
   spin waiting on the remote CPU is reasonably time bound.

   Implement an empty stub function for that case.

2) If enabled, the expiry happens in task work before returning to user
   space or guest mode. The expired timers are marked as firing and moved
   from the timer queue to a local list head with sighand lock held. Once
   the timers are moved, sighand lock is dropped and the expiry happens in
   fully preemptible context. That means the expiring task can be scheduled
   out, migrated, interrupted etc. So spin waiting on it is more than
   suboptimal.

   The timer wheel has a timer_wait_running() mechanism for RT, which uses
   a per CPU timer-base expiry lock which is held by the expiry code and the
   task waiting for the timer function to complete blocks on that lock.

   This does not work in the same way for posix CPU timers as there is no
   timer base and expiry for process wide timers can run on any task
   belonging to that process, but the concept of waiting on an expiry lock
   can be used too in a slightly different way:

    - Add a mutex to struct posix_cputimers_work. This struct is per task
      and used to schedule the expiry task work from the timer interrupt.

    - Add a task_struct pointer to struct cpu_timer which is used to store
      a the task which runs the expiry. That's filled in when the task
      moves the expired timers to the local expiry list. That's not
      affecting the size of the k_itimer union as there are bigger union
      members already

    - Let the task take the expiry mutex around the expiry function

    - Let the waiter acquire a task reference with rcu_read_lock() held and
      block on the expiry mutex

   This avoids spin-waiting on a task which might not even be on a CPU and
   works nicely for RT too.

Fixes: ec8f954a40 ("posix-timers: Use a callback for cancel synchronization on PREEMPT_RT")
Reported-by: Marco Elver <elver@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Marco Elver <elver@google.com>
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/87zg764ojw.ffs@tglx
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-05-11 23:03:00 +09:00
Greg Kroah-Hartman
15cffd01ed time/debug: Fix memory leak with using debugfs_lookup()
[ Upstream commit 5b268d8abaec6cbd4bd70d062e769098d96670aa ]

When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time.  To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic at
once.

Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230202151214.2306822-1-gregkh@linuxfoundation.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-03-10 09:33:52 +01:00
Feng Tang
856dbac0a8 clocksource: Suspend the watchdog temporarily when high read latency detected
[ Upstream commit b7082cdfc464bf9231300605d03eebf943dda307 ]

Bugs have been reported on 8 sockets x86 machines in which the TSC was
wrongly disabled when the system is under heavy workload.

 [ 818.380354] clocksource: timekeeping watchdog on CPU336: hpet wd-wd read-back delay of 1203520ns
 [ 818.436160] clocksource: wd-tsc-wd read-back delay of 181880ns, clock-skew test skipped!
 [ 819.402962] clocksource: timekeeping watchdog on CPU338: hpet wd-wd read-back delay of 324000ns
 [ 819.448036] clocksource: wd-tsc-wd read-back delay of 337240ns, clock-skew test skipped!
 [ 819.880863] clocksource: timekeeping watchdog on CPU339: hpet read-back delay of 150280ns, attempt 3, marking unstable
 [ 819.936243] tsc: Marking TSC unstable due to clocksource watchdog
 [ 820.068173] TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.
 [ 820.092382] sched_clock: Marking unstable (818769414384, 1195404998)
 [ 820.643627] clocksource: Checking clocksource tsc synchronization from CPU 267 to CPUs 0,4,25,70,126,430,557,564.
 [ 821.067990] clocksource: Switched to clocksource hpet

This can be reproduced by running memory intensive 'stream' tests,
or some of the stress-ng subcases such as 'ioport'.

The reason for these issues is the when system is under heavy load, the
read latency of the clocksources can be very high.  Even lightweight TSC
reads can show high latencies, and latencies are much worse for external
clocksources such as HPET or the APIC PM timer.  These latencies can
result in false-positive clocksource-unstable determinations.

These issues were initially reported by a customer running on a production
system, and this problem was reproduced on several generations of Xeon
servers, especially when running the stress-ng test.  These Xeon servers
were not production systems, but they did have the latest steppings
and firmware.

Given that the clocksource watchdog is a continual diagnostic check with
frequency of twice a second, there is no need to rush it when the system
is under heavy load.  Therefore, when high clocksource read latencies
are detected, suspend the watchdog timer for 5 minutes.

Signed-off-by: Feng Tang <feng.tang@intel.com>
Acked-by: Waiman Long <longman@redhat.com>
Cc: John Stultz <jstultz@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: Feng Tang <feng.tang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-03-10 09:33:50 +01:00
Jann Horn
3a43a366ec timers: Prevent union confusion from unexpected restart_syscall()
[ Upstream commit 9f76d59173d9d146e96c66886b671c1915a5c5e5 ]

The nanosleep syscalls use the restart_block mechanism, with a quirk:
The `type` and `rmtp`/`compat_rmtp` fields are set up unconditionally on
syscall entry, while the rest of the restart_block is only set up in the
unlikely case that the syscall is actually interrupted by a signal (or
pseudo-signal) that doesn't have a signal handler.

If the restart_block was set up by a previous syscall (futex(...,
FUTEX_WAIT, ...) or poll()) and hasn't been invalidated somehow since then,
this will clobber some of the union fields used by futex_wait_restart() and
do_restart_poll().

If userspace afterwards wrongly calls the restart_syscall syscall,
futex_wait_restart()/do_restart_poll() will read struct fields that have
been clobbered.

This doesn't actually lead to anything particularly interesting because
none of the union fields contain trusted kernel data, and
futex(..., FUTEX_WAIT, ...) and poll() aren't syscalls where it makes much
sense to apply seccomp filters to their arguments.

So the current consequences are just of the "if userspace does bad stuff,
it can damage itself, and that's not a problem" flavor.

But still, it seems like a hazard for future developers, so invalidate the
restart_block when partly setting it up in the nanosleep syscalls.

Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230105134403.754986-1-jannh@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-03-10 09:33:49 +01:00
Thomas Gleixner
70fdd9831a alarmtimer: Prevent starvation by small intervals and SIG_IGN
commit d125d1349abeb46945dc5e98f7824bf688266f13 upstream.

syzbot reported a RCU stall which is caused by setting up an alarmtimer
with a very small interval and ignoring the signal. The reproducer arms the
alarm timer with a relative expiry of 8ns and an interval of 9ns. Not a
problem per se, but that's an issue when the signal is ignored because then
the timer is immediately rearmed because there is no way to delay that
rearming to the signal delivery path.  See posix_timer_fn() and commit
58229a1899 ("posix-timers: Prevent softirq starvation by small intervals
and SIG_IGN") for details.

The reproducer does not set SIG_IGN explicitely, but it sets up the timers
signal with SIGCONT. That has the same effect as explicitely setting
SIG_IGN for a signal as SIGCONT is ignored if there is no handler set and
the task is not ptraced.

The log clearly shows that:

   [pid  5102] --- SIGCONT {si_signo=SIGCONT, si_code=SI_TIMER, si_timerid=0, si_overrun=316014, si_int=0, si_ptr=NULL} ---

It works because the tasks are traced and therefore the signal is queued so
the tracer can see it, which delays the restart of the timer to the signal
delivery path. But then the tracer is killed:

   [pid  5087] kill(-5102, SIGKILL <unfinished ...>
   ...
   ./strace-static-x86_64: Process 5107 detached

and after it's gone the stall can be observed:

   syzkaller login: [   79.439102][    C0] hrtimer: interrupt took 68471 ns
   [  184.460538][    C1] rcu: INFO: rcu_preempt detected stalls on CPUs/tasks:
   ...
   [  184.658237][    C1] rcu: Stack dump where RCU GP kthread last ran:
   [  184.664574][    C1] Sending NMI from CPU 1 to CPUs 0:
   [  184.669821][    C0] NMI backtrace for cpu 0
   [  184.669831][    C0] CPU: 0 PID: 5108 Comm: syz-executor192 Not tainted 6.2.0-rc6-next-20230203-syzkaller #0
   ...
   [  184.670036][    C0] Call Trace:
   [  184.670041][    C0]  <IRQ>
   [  184.670045][    C0]  alarmtimer_fired+0x327/0x670

posix_timer_fn() prevents that by checking whether the interval for
timers which have the signal ignored is smaller than a jiffie and
artifically delay it by shifting the next expiry out by a jiffie. That's
accurate vs. the overrun accounting, but slightly inaccurate
vs. timer_gettimer(2).

The comment in that function says what needs to be done and there was a fix
available for the regular userspace induced SIG_IGN mechanism, but that did
not work due to the implicit ignore for SIGCONT and similar signals. This
needs to be worked on, but for now the only available workaround is to do
exactly what posix_timer_fn() does:

Increase the interval of self-rearming timers, which have their signal
ignored, to at least a jiffie.

Interestingly this has been fixed before via commit ff86bf0c65
("alarmtimer: Rate limit periodic intervals") already, but that fix got
lost in a later rework.

Reported-by: syzbot+b9564ba6e8e00694511b@syzkaller.appspotmail.com
Fixes: f2c45807d3 ("alarmtimer: Switch over to generic set/get/rearm routine")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/87k00q1no2.ffs@tglx
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-02-22 12:59:55 +01:00
Jason A. Donenfeld
81895a65ec treewide: use prandom_u32_max() when possible, part 1
Rather than incurring a division or requesting too many random bytes for
the given range, use the prandom_u32_max() function, which only takes
the minimum required bytes from the RNG and avoids divisions. This was
done mechanically with this coccinelle script:

@basic@
expression E;
type T;
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
typedef u64;
@@
(
- ((T)get_random_u32() % (E))
+ prandom_u32_max(E)
|
- ((T)get_random_u32() & ((E) - 1))
+ prandom_u32_max(E * XXX_MAKE_SURE_E_IS_POW2)
|
- ((u64)(E) * get_random_u32() >> 32)
+ prandom_u32_max(E)
|
- ((T)get_random_u32() & ~PAGE_MASK)
+ prandom_u32_max(PAGE_SIZE)
)

@multi_line@
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
identifier RAND;
expression E;
@@

-       RAND = get_random_u32();
        ... when != RAND
-       RAND %= (E);
+       RAND = prandom_u32_max(E);

// Find a potential literal
@literal_mask@
expression LITERAL;
type T;
identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32";
position p;
@@

        ((T)get_random_u32()@p & (LITERAL))

// Add one to the literal.
@script:python add_one@
literal << literal_mask.LITERAL;
RESULT;
@@

value = None
if literal.startswith('0x'):
        value = int(literal, 16)
elif literal[0] in '123456789':
        value = int(literal, 10)
if value is None:
        print("I don't know how to handle %s" % (literal))
        cocci.include_match(False)
elif value == 2**32 - 1 or value == 2**31 - 1 or value == 2**24 - 1 or value == 2**16 - 1 or value == 2**8 - 1:
        print("Skipping 0x%x for cleanup elsewhere" % (value))
        cocci.include_match(False)
elif value & (value + 1) != 0:
        print("Skipping 0x%x because it's not a power of two minus one" % (value))
        cocci.include_match(False)
elif literal.startswith('0x'):
        coccinelle.RESULT = cocci.make_expr("0x%x" % (value + 1))
else:
        coccinelle.RESULT = cocci.make_expr("%d" % (value + 1))

// Replace the literal mask with the calculated result.
@plus_one@
expression literal_mask.LITERAL;
position literal_mask.p;
expression add_one.RESULT;
identifier FUNC;
@@

-       (FUNC()@p & (LITERAL))
+       prandom_u32_max(RESULT)

@collapse_ret@
type T;
identifier VAR;
expression E;
@@

 {
-       T VAR;
-       VAR = (E);
-       return VAR;
+       return E;
 }

@drop_var@
type T;
identifier VAR;
@@

 {
-       T VAR;
        ... when != VAR
 }

Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Yury Norov <yury.norov@gmail.com>
Reviewed-by: KP Singh <kpsingh@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz> # for ext4 and sbitmap
Reviewed-by: Christoph Böhmwalder <christoph.boehmwalder@linbit.com> # for drbd
Acked-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Heiko Carstens <hca@linux.ibm.com> # for s390
Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # for mmc
Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-10-11 17:42:55 -06:00
Linus Torvalds
30c999937f Merge tag 'sched-core-2022-10-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
 "Debuggability:

   - Change most occurances of BUG_ON() to WARN_ON_ONCE()

   - Reorganize & fix TASK_ state comparisons, turn it into a bitmap

   - Update/fix misc scheduler debugging facilities

  Load-balancing & regular scheduling:

   - Improve the behavior of the scheduler in presence of lot of
     SCHED_IDLE tasks - in particular they should not impact other
     scheduling classes.

   - Optimize task load tracking, cleanups & fixes

   - Clean up & simplify misc load-balancing code

  Freezer:

   - Rewrite the core freezer to behave better wrt thawing and be
     simpler in general, by replacing PF_FROZEN with TASK_FROZEN &
     fixing/adjusting all the fallout.

  Deadline scheduler:

   - Fix the DL capacity-aware code

   - Factor out dl_task_is_earliest_deadline() &
     replenish_dl_new_period()

   - Relax/optimize locking in task_non_contending()

  Cleanups:

   - Factor out the update_current_exec_runtime() helper

   - Various cleanups, simplifications"

* tag 'sched-core-2022-10-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits)
  sched: Fix more TASK_state comparisons
  sched: Fix TASK_state comparisons
  sched/fair: Move call to list_last_entry() in detach_tasks
  sched/fair: Cleanup loop_max and loop_break
  sched/fair: Make sure to try to detach at least one movable task
  sched: Show PF_flag holes
  freezer,sched: Rewrite core freezer logic
  sched: Widen TAKS_state literals
  sched/wait: Add wait_event_state()
  sched/completion: Add wait_for_completion_state()
  sched: Add TASK_ANY for wait_task_inactive()
  sched: Change wait_task_inactive()s match_state
  freezer,umh: Clean up freezer/initrd interaction
  freezer: Have {,un}lock_system_sleep() save/restore flags
  sched: Rename task_running() to task_on_cpu()
  sched/fair: Cleanup for SIS_PROP
  sched/fair: Default to false in test_idle_cores()
  sched/fair: Remove useless check in select_idle_core()
  sched/fair: Avoid double search on same cpu
  sched/fair: Remove redundant check in select_idle_smt()
  ...
2022-10-10 09:10:28 -07:00
Peter Zijlstra
f5d39b0208 freezer,sched: Rewrite core freezer logic
Rewrite the core freezer to behave better wrt thawing and be simpler
in general.

By replacing PF_FROZEN with TASK_FROZEN, a special block state, it is
ensured frozen tasks stay frozen until thawed and don't randomly wake
up early, as is currently possible.

As such, it does away with PF_FROZEN and PF_FREEZER_SKIP, freeing up
two PF_flags (yay!).

Specifically; the current scheme works a little like:

	freezer_do_not_count();
	schedule();
	freezer_count();

And either the task is blocked, or it lands in try_to_freezer()
through freezer_count(). Now, when it is blocked, the freezer
considers it frozen and continues.

However, on thawing, once pm_freezing is cleared, freezer_count()
stops working, and any random/spurious wakeup will let a task run
before its time.

That is, thawing tries to thaw things in explicit order; kernel
threads and workqueues before doing bringing SMP back before userspace
etc.. However due to the above mentioned races it is entirely possible
for userspace tasks to thaw (by accident) before SMP is back.

This can be a fatal problem in asymmetric ISA architectures (eg ARMv9)
where the userspace task requires a special CPU to run.

As said; replace this with a special task state TASK_FROZEN and add
the following state transitions:

	TASK_FREEZABLE	-> TASK_FROZEN
	__TASK_STOPPED	-> TASK_FROZEN
	__TASK_TRACED	-> TASK_FROZEN

The new TASK_FREEZABLE can be set on any state part of TASK_NORMAL
(IOW. TASK_INTERRUPTIBLE and TASK_UNINTERRUPTIBLE) -- any such state
is already required to deal with spurious wakeups and the freezer
causes one such when thawing the task (since the original state is
lost).

The special __TASK_{STOPPED,TRACED} states *can* be restored since
their canonical state is in ->jobctl.

With this, frozen tasks need an explicit TASK_FROZEN wakeup and are
free of undue (early / spurious) wakeups.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lore.kernel.org/r/20220822114649.055452969@infradead.org
2022-09-07 21:53:50 +02:00
Youngmin Nam
46dae32fe6 time: Correct the prototype of ns_to_kernel_old_timeval and ns_to_timespec64
In ns_to_kernel_old_timeval() definition, the function argument is defined
with const identifier in kernel/time/time.c, but the prototype in
include/linux/time32.h looks different.

- The function is defined in kernel/time/time.c as below:
  struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)

- The function is decalared in include/linux/time32.h as below:
  extern struct __kernel_old_timeval ns_to_kernel_old_timeval(s64 nsec);

Because the variable of arithmethic types isn't modified in the calling scope,
there's no need to mark arguments as const, which was already mentioned during 
review (Link[1) of the original patch.

Likewise remove the "const" keyword in both definition and declaration of
ns_to_timespec64() as requested by Arnd (Link[2]).

Fixes: a84d116916 ("y2038: Introduce struct __kernel_old_timeval")
Signed-off-by: Youngmin Nam <youngmin.nam@samsung.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lore.kernel.org/all/20220712094715.2918823-1-youngmin.nam@samsung.com
Link[1]: https://lore.kernel.org/all/20180310081123.thin6wphgk7tongy@gmail.com/
Link[2]: https://lore.kernel.org/all/CAK8P3a3nknJgEDESGdJH91jMj6R_xydFqWASd8r5BbesdvMBgA@mail.gmail.com/
2022-08-09 20:02:13 +02:00
Jiri Slaby
221f9d9cdf posix-timers: Make do_clock_gettime() static
do_clock_gettime() is used only in posix-stubs.c, so make it static. It avoids
a compiler warning too:
time/posix-stubs.c:73:5: warning: no previous prototype for ‘do_clock_gettime’ [-Wmissing-prototypes]

Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220719085620.30567-1-jslaby@suse.cz
2022-08-06 10:33:54 +02:00
Linus Torvalds
f86d1fbbe7 Merge tag 'net-next-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
Pull networking changes from Paolo Abeni:
 "Core:

   - Refactor the forward memory allocation to better cope with memory
     pressure with many open sockets, moving from a per socket cache to
     a per-CPU one

   - Replace rwlocks with RCU for better fairness in ping, raw sockets
     and IP multicast router.

   - Network-side support for IO uring zero-copy send.

   - A few skb drop reason improvements, including codegen the source
     file with string mapping instead of using macro magic.

   - Rename reference tracking helpers to a more consistent netdev_*
     schema.

   - Adapt u64_stats_t type to address load/store tearing issues.

   - Refine debug helper usage to reduce the log noise caused by bots.

  BPF:

   - Improve socket map performance, avoiding skb cloning on read
     operation.

   - Add support for 64 bits enum, to match types exposed by kernel.

   - Introduce support for sleepable uprobes program.

   - Introduce support for enum textual representation in libbpf.

   - New helpers to implement synproxy with eBPF/XDP.

   - Improve loop performances, inlining indirect calls when possible.

   - Removed all the deprecated libbpf APIs.

   - Implement new eBPF-based LSM flavor.

   - Add type match support, which allow accurate queries to the eBPF
     used types.

   - A few TCP congetsion control framework usability improvements.

   - Add new infrastructure to manipulate CT entries via eBPF programs.

   - Allow for livepatch (KLP) and BPF trampolines to attach to the same
     kernel function.

  Protocols:

   - Introduce per network namespace lookup tables for unix sockets,
     increasing scalability and reducing contention.

   - Preparation work for Wi-Fi 7 Multi-Link Operation (MLO) support.

   - Add support to forciby close TIME_WAIT TCP sockets via user-space
     tools.

   - Significant performance improvement for the TLS 1.3 receive path,
     both for zero-copy and not-zero-copy.

   - Support for changing the initial MTPCP subflow priority/backup
     status

   - Introduce virtually contingus buffers for sockets over RDMA, to
     cope better with memory pressure.

   - Extend CAN ethtool support with timestamping capabilities

   - Refactor CAN build infrastructure to allow building only the needed
     features.

  Driver API:

   - Remove devlink mutex to allow parallel commands on multiple links.

   - Add support for pause stats in distributed switch.

   - Implement devlink helpers to query and flash line cards.

   - New helper for phy mode to register conversion.

  New hardware / drivers:

   - Ethernet DSA driver for the rockchip mt7531 on BPI-R2 Pro.

   - Ethernet DSA driver for the Renesas RZ/N1 A5PSW switch.

   - Ethernet DSA driver for the Microchip LAN937x switch.

   - Ethernet PHY driver for the Aquantia AQR113C EPHY.

   - CAN driver for the OBD-II ELM327 interface.

   - CAN driver for RZ/N1 SJA1000 CAN controller.

   - Bluetooth: Infineon CYW55572 Wi-Fi plus Bluetooth combo device.

  Drivers:

   - Intel Ethernet NICs:
      - i40e: add support for vlan pruning
      - i40e: add support for XDP framented packets
      - ice: improved vlan offload support
      - ice: add support for PPPoE offload

   - Mellanox Ethernet (mlx5)
      - refactor packet steering offload for performance and scalability
      - extend support for TC offload
      - refactor devlink code to clean-up the locking schema
      - support stacked vlans for bridge offloads
      - use TLS objects pool to improve connection rate

   - Netronome Ethernet NICs (nfp):
      - extend support for IPv6 fields mangling offload
      - add support for vepa mode in HW bridge
      - better support for virtio data path acceleration (VDPA)
      - enable TSO by default

   - Microsoft vNIC driver (mana)
      - add support for XDP redirect

   - Others Ethernet drivers:
      - bonding: add per-port priority support
      - microchip lan743x: extend phy support
      - Fungible funeth: support UDP segmentation offload and XDP xmit
      - Solarflare EF100: add support for virtual function representors
      - MediaTek SoC: add XDP support

   - Mellanox Ethernet/IB switch (mlxsw):
      - dropped support for unreleased H/W (XM router).
      - improved stats accuracy
      - unified bridge model coversion improving scalability (parts 1-6)
      - support for PTP in Spectrum-2 asics

   - Broadcom PHYs
      - add PTP support for BCM54210E
      - add support for the BCM53128 internal PHY

   - Marvell Ethernet switches (prestera):
      - implement support for multicast forwarding offload

   - Embedded Ethernet switches:
      - refactor OcteonTx MAC filter for better scalability
      - improve TC H/W offload for the Felix driver
      - refactor the Microchip ksz8 and ksz9477 drivers to share the
        probe code (parts 1, 2), add support for phylink mac
        configuration

   - Other WiFi:
      - Microchip wilc1000: diable WEP support and enable WPA3
      - Atheros ath10k: encapsulation offload support

  Old code removal:

   - Neterion vxge ethernet driver: this is untouched since more than 10 years"

* tag 'net-next-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1890 commits)
  doc: sfp-phylink: Fix a broken reference
  wireguard: selftests: support UML
  wireguard: allowedips: don't corrupt stack when detecting overflow
  wireguard: selftests: update config fragments
  wireguard: ratelimiter: use hrtimer in selftest
  net/mlx5e: xsk: Discard unaligned XSK frames on striding RQ
  net: usb: ax88179_178a: Bind only to vendor-specific interface
  selftests: net: fix IOAM test skip return code
  net: usb: make USB_RTL8153_ECM non user configurable
  net: marvell: prestera: remove reduntant code
  octeontx2-pf: Reduce minimum mtu size to 60
  net: devlink: Fix missing mutex_unlock() call
  net/tls: Remove redundant workqueue flush before destroy
  net: txgbe: Fix an error handling path in txgbe_probe()
  net: dsa: Fix spelling mistakes and cleanup code
  Documentation: devlink: add add devlink-selftests to the table of contents
  dccp: put dccp_qpolicy_full() and dccp_qpolicy_push() in the same lock
  net: ionic: fix error check for vlan flags in ionic_set_nic_features()
  net: ice: fix error NETIF_F_HW_VLAN_CTAG_FILTER check in ice_vsi_sync_fltr()
  nfp: flower: add support for tunnel offload without key ID
  ...
2022-08-03 16:29:08 -07:00
Linus Torvalds
7d9d077c78 Merge tag 'rcu.2022.07.26a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu
Pull RCU updates from Paul McKenney:

 - Documentation updates

 - Miscellaneous fixes

 - Callback-offload updates, perhaps most notably a new
   RCU_NOCB_CPU_DEFAULT_ALL Kconfig option that causes all CPUs to be
   offloaded at boot time, regardless of kernel boot parameters.

   This is useful to battery-powered systems such as ChromeOS and
   Android. In addition, a new RCU_NOCB_CPU_CB_BOOST kernel boot
   parameter prevents offloaded callbacks from interfering with
   real-time workloads and with energy-efficiency mechanisms

 - Polled grace-period updates, perhaps most notably making these APIs
   account for both normal and expedited grace periods

 - Tasks RCU updates, perhaps most notably reducing the CPU overhead of
   RCU tasks trace grace periods by more than a factor of two on a
   system with 15,000 tasks.

   The reduction is expected to increase with the number of tasks, so it
   seems reasonable to hypothesize that a system with 150,000 tasks
   might see a 20-fold reduction in CPU overhead

 - Torture-test updates

 - Updates that merge RCU's dyntick-idle tracking into context tracking,
   thus reducing the overhead of transitioning to kernel mode from
   either idle or nohz_full userspace execution for kernels that track
   context independently of RCU.

   This is expected to be helpful primarily for kernels built with
   CONFIG_NO_HZ_FULL=y

* tag 'rcu.2022.07.26a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (98 commits)
  rcu: Add irqs-disabled indicator to expedited RCU CPU stall warnings
  rcu: Diagnose extended sync_rcu_do_polled_gp() loops
  rcu: Put panic_on_rcu_stall() after expedited RCU CPU stall warnings
  rcutorture: Test polled expedited grace-period primitives
  rcu: Add polled expedited grace-period primitives
  rcutorture: Verify that polled GP API sees synchronous grace periods
  rcu: Make Tiny RCU grace periods visible to polled APIs
  rcu: Make polled grace-period API account for expedited grace periods
  rcu: Switch polled grace-period APIs to ->gp_seq_polled
  rcu/nocb: Avoid polling when my_rdp->nocb_head_rdp list is empty
  rcu/nocb: Add option to opt rcuo kthreads out of RT priority
  rcu: Add nocb_cb_kthread check to rcu_is_callbacks_kthread()
  rcu/nocb: Add an option to offload all CPUs on boot
  rcu/nocb: Fix NOCB kthreads spawn failure with rcu_nocb_rdp_deoffload() direct call
  rcu/nocb: Invert rcu_state.barrier_mutex VS hotplug lock locking order
  rcu/nocb: Add/del rdp to iterate from rcuog itself
  rcu/tree: Add comment to describe GP-done condition in fqs loop
  rcu: Initialize first_gp_fqs at declaration in rcu_gp_fqs()
  rcu/kvfree: Remove useless monitor_todo flag
  rcu: Cleanup RCU urgency state for offline CPU
  ...
2022-08-02 19:12:45 -07:00
Jason A. Donenfeld
151c8e499f wireguard: ratelimiter: use hrtimer in selftest
Using msleep() is problematic because it's compared against
ratelimiter.c's ktime_get_coarse_boottime_ns(), which means on systems
with slow jiffies (such as UML's forced HZ=100), the result is
inaccurate. So switch to using schedule_hrtimeout().

However, hrtimer gives us access only to the traditional posix timers,
and none of the _COARSE variants. So now, rather than being too
imprecise like jiffies, it's too precise.

One solution would be to give it a large "range" value, but this will
still fire early on a loaded system. A better solution is to align the
timeout to the actual coarse timer, and then round up to the nearest
tick, plus change.

So add the timeout to the current coarse time, and then
schedule_hrtimer() until the absolute computed time.

This should hopefully reduce flakes in CI as well. Note that we keep the
retry loop in case the entire function is running behind, because the
test could still be scheduled out, by either the kernel or by the
hypervisor's kernel, in which case restarting the test and hoping to not
be scheduled out still helps.

Fixes: e7096c131e ("net: WireGuard secure network tunnel")
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-08-02 13:47:50 -07:00
Jason A. Donenfeld
b8ac29b401 timekeeping: contribute wall clock to rng on time change
The rng's random_init() function contributes the real time to the rng at
boot time, so that events can at least start in relation to something
particular in the real world. But this clock might not yet be set that
point in boot, so nothing is contributed. In addition, the relation
between minor clock changes from, say, NTP, and the cycle counter is
potentially useful entropic data.

This commit addresses this by mixing in a time stamp on calls to
settimeofday and adjtimex. No entropy is credited in doing so, so it
doesn't make initialization faster, but it is still useful input to
have.

Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Cc: stable@vger.kernel.org
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-07-18 15:04:04 +02:00
Oleg Nesterov
d5b36a4dbd fix race between exit_itimers() and /proc/pid/timers
As Chris explains, the comment above exit_itimers() is not correct,
we can race with proc_timers_seq_ops. Change exit_itimers() to clear
signal->posix_timers with ->siglock held.

Cc: <stable@vger.kernel.org>
Reported-by: chris@accessvector.net
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-07-11 09:52:59 -07:00
Frederic Weisbecker
e67198cc05 context_tracking: Take idle eqs entrypoints over RCU
The RCU dynticks counter is going to be merged into the context tracking
subsystem. Start with moving the idle extended quiescent states
entrypoints to context tracking. For now those are dumb redirections to
existing RCU calls.

[ paulmck: Apply kernel test robot feedback. ]

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Nicolas Saenz Julienne <nsaenz@kernel.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Xiongfeng Wang <wangxiongfeng2@huawei.com>
Cc: Yu Liao <liaoyu15@huawei.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Paul Gortmaker<paul.gortmaker@windriver.com>
Cc: Alex Belits <abelits@marvell.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
2022-07-05 13:32:16 -07:00
Frederic Weisbecker
24a9c54182 context_tracking: Split user tracking Kconfig
Context tracking is going to be used not only to track user transitions
but also idle/IRQs/NMIs. The user tracking part will then become a
separate feature. Prepare Kconfig for that.

[ frederic: Apply Max Filippov feedback. ]

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Nicolas Saenz Julienne <nsaenz@kernel.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Xiongfeng Wang <wangxiongfeng2@huawei.com>
Cc: Yu Liao <liaoyu15@huawei.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Paul Gortmaker<paul.gortmaker@windriver.com>
Cc: Alex Belits <abelits@marvell.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
2022-06-29 17:04:09 -07:00